

# ALICE MC in Run3/4

S. Wenzel (CERN) for the ALICE collaboration (input from A. Morsch / S. Piano / R. Preghenella)



#### Disclaimer

- Upgrades for ALICE already imminent so this is less of "looking into the future"
- Picked out a few subjects / highlights within our upgrade transformation,
   the hope that it might be interesting for others
  - o follow a holistic approach on the overall simulation ecosystem, not only on the transport engines
- Raise a few points that might be beneficial to us in the Geant4 ecosystem



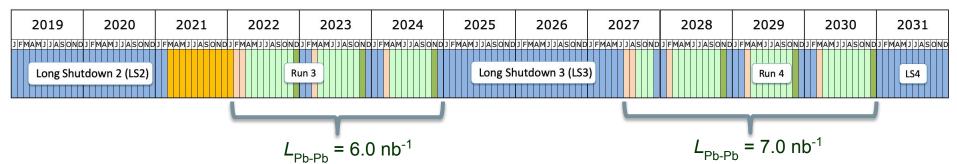
#### ALICE Run 3 teaser

- PbPb collisions at max 50kHz (100x higher data rate through novel detector technology)
- substantial inter bunch crossing pileup (like here in the TPC)
- (untriggered) continuous readout
- data comes in unfiltered readout buffers, called timeframe, accumulated over ~11ms (~550 min bias PbPb events)

timeframe

### impact on data processing / reconstruction:

- need for fast online processing to reduce data via synchronous reconstruction
- setup of dedicated online computing farm with GPUs
- timeframes, rather than events, become the fundamental unit in reco algorithms


## impact on detector simulation MC productions:

- new detector algorithms/geometry
- completely new digitization framework to account for pileup
- timeframe oriented processing (reco) demands larger memory in turn requiring multi-core GRID operation (until now exclusively 1-core)

overlapping tracks / event pileup in a TPC timeframe (reconstructed)



## ALICE physics goals for Run 3 and 4



- Heavy-flavour mesons and baryons (down to very low  $p_{\scriptscriptstyle 
  m T}$ )
  - ⇒ mechanism of quark-medium interaction
- Charmonium states
  - ⇒ dissociation/regeneration as tool to study de-confinement and medium temperature
- Dileptons from QGP radiation and low-mass vector mesons
  - ⇒ x-symmetry restoration, initial temperature and EOS
- High-precision measurement of light and hyper (anti-)nuclei
  - ⇒ production mechanism and degree of collectivity

- ....
- Focus on PbPb physics!
- (smaller pp processing than before)
- ~100x more min bias + ~10x increase in triggered events (interesting events) compared to Run1/2

CERN Yellow Report arXiv:1812.06772

# ALICE

## Full MC needs for Run 3 (similar for Run4)

- Run3-TDR: At least 500 million MC
   PbPb events to serve physics analysis
  - e.g., driven by requirement to obtain reco efficiencies in whole pT range
- In Run2, 1 min-bias PbPb MC collision costed 24k HS06s on average
  - ~40min on average GRID CPU
- Folding in computing resources, estimated ability to simulate ~1 10^9 events in Run3.

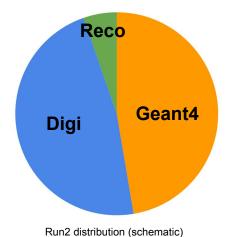


 ... but small space for errors or unforeseen needs

#### Challenging for some analysis

 through drastic reduction of ratio MC / collected data to ~ 1-2% on average, in comparison to Run1 (40%)

#### However not "hopeless"


- Often systematics rather than MCstatistics effected
- Plan to increase quality of MC-sample for specific analysis by strengthening event selection/biasing or signal enhancement approaches
- Run3 software refactoring not yet account

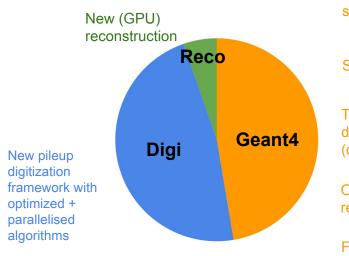




#### A word on relative CPU share in Run2

Basic observation driving developments




1 event = 24000 HS06s MC budget only

- transport and digitization expensive in Run2 MC
  - o pp: digi >= transport
  - PbPb: digi ~ 1/2 transport
- Unusual corner of phase-space compared to other LHC experiments
- In ALICE, substantial need to optimize beyond G4
  - improvements in G4 will be limited unless rest is improved too



#### Overview of MC upgrade developments

- Try to bridge the gap ... target high quality MC samples for analysis beyond bare minimum
- Apply holistic multi-level strategy for MC (incorporate within the anyway necessary transformation of Run2->Run3 software stack)



Sub-event parallel simulation framework

Simulator-as-service

Tune engine and detectors settings (cuts, geometry)

Optimize physics response code

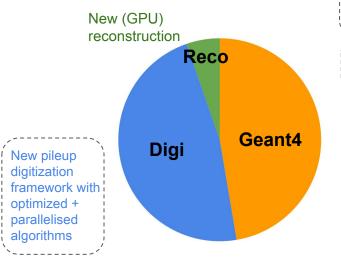
Fast sim in certain detectors (ZDC)

Improved event biasing / selection capabilities

Signal enhancement strategies (embedding, like LHCb ReDecay) needing less background simulation

Task parallelism and multicore readiness on a global level

 efficient overall GRID algorithm scheduler Decrease error rate through CI and performance monitoring efforts


Improved MC production planning and setup

On an integrated / global level

# ALICE

## Overview of MC upgrade developments

- Try to bridge the gap ... target high quality MC samples for analysis beyond bare minimum
- Apply holistic multi-level strategy for MC (incorporate within the anyway necessary transformation of Run2->Run3 software stack)



Sub-event parallel simulation framework

Simulator-as-service

Tune engine and detectors settings (cuts, geometry)

Optimize physics response code

Fast sim in certain detectors (ZDC)

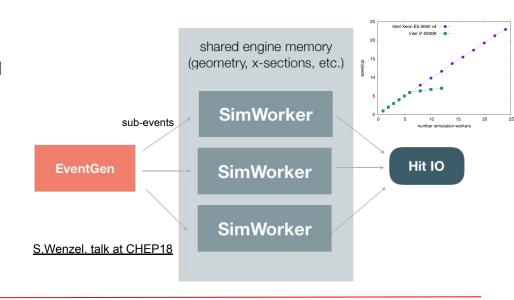
Improved event biasing / selection capabilities

Signal enhancement strategies (embedding, like LHCb ReDecay) needing less background simulation

Task parallelism and multicore readiness on a global level

 efficient overall GRID algorithm scheduler

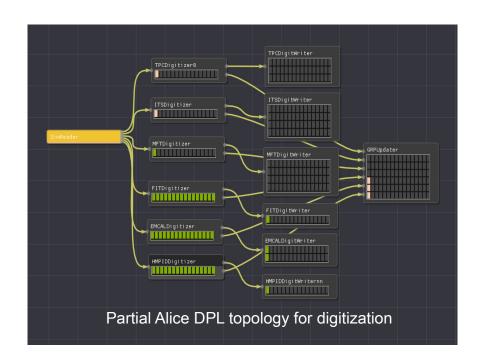
On an integrated / global level


Decrease error rate through CI and performance monitoring efforts

Improved MC production planning and setup

# ALICE

### New Run3/4 transport framework

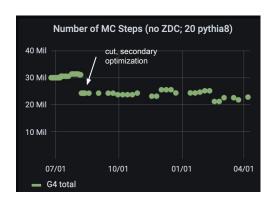

- ALICE remains in Virtual Monte Carlo (VMC) ecosystem and uses TGeo/ROOT as geometry system
  - Geant4 as main backend (optional and seamless switch to Fluka, Geant3, ...)
- Distributed multi-process components based on FairMQ
  - o asynchronous generation, transport, IO
- Backend-independent sub-event parallel simulation
  - works for G4 and Fluka, G3
- HPC / multicore ready
  - nice CPU scaling and low mem-footprint (late worker forking)
- Developers/CI-testing appreciate ability to get few PbPb on the laptop in minutes rather than hours



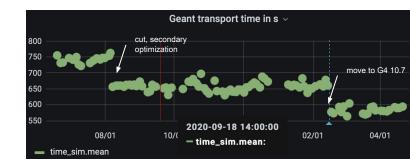


#### Run3 developments/architecture for digitization

- Complete rewrite or new development of digitization
  - due to novel continuous readout + pileup
- Chance to use modern C++ features and target optimizations from scratch
  - Major gain in TPC digitization (6 to 20x faster than before)
- Implemented using ALICE Run3 data processing layer (DPL)
  - reactive data-flow framework also used in data taking / synchronous reconstruction / analysis
- New parallelism features for multicore GRID:
  - parallel within detector
  - ... or across detectors



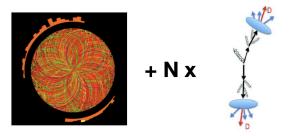


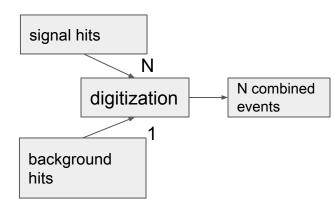


## Run2-Run3 vanilla perf comparison (1-core)

 For vanilla full event sim, Run3 upgrade refactoring + tuning already very impactful

|      | G4 trans | digitization |
|------|----------|--------------|
| PbPb | ~2x      | ~5x          |
| рр   | ~1.8x    | ~20x         |




- Potential factor ~2(PbPb) to ~5(pp) of more Run3 statistics for physics analysis!
- Novel continuous perf monitoring an important aspect in this
- For vanilla mode, now increased weight on Geant4
   performance (less digitization)

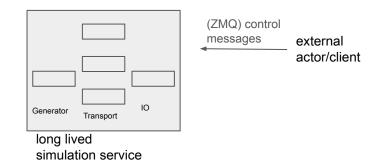


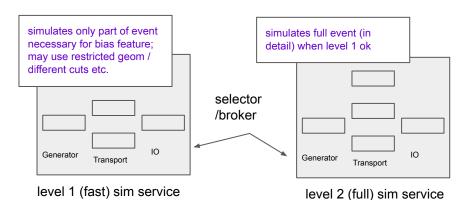

# ALT CE

## Embedding for signal (statistics) enhancement

- Identified signal enhancement strategies as key to provide larger sample to physics analysis in Run3/4
- Reuse as much as possible expensively simulated background with multiple injected signals (similar to LHCb ReDecay)
  - o combine signal with same background during digitization
  - saves time from less background Geant transport
- Currently yields another factor of ~4-5x overall!
- Even faster and more sophisticated schemes in preparation ("background on signal filtering")





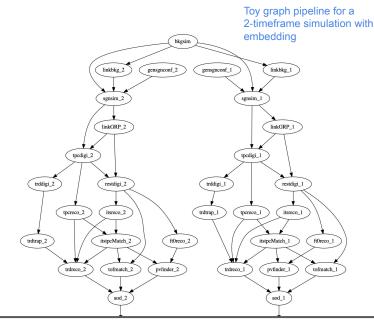

#### Simulator as-a-service / improved biasing

- Offer new "daemonized" simulator service with client communication/interface via ZMQ
  - Enables "just-time-time" event requests from outside actor
  - May save overhead of repeated geometry/x-section initialization

- Building block to construct complex biasing (purity enhancing) schemes via external event inspector (start-stop-inspect-continue)
- Enables multi-stage simulation schemes with crude and detailed sim






# ALICE

#### Novel multicore GRID executor "framework"

- ALICE globally based on multiprocessing rather than big multithreaded framework
  - o sim, digi, reco different processes
- Previously (1-core world), a simple shell script ok to call processes in order
- Move to 8-core GRID execution brings a new degree of freedom, requiring a more sophisticated approach to achieve high CPU efficiency

New **graph-oriented workflow modelling** - and resource aware **GRID executor/scheduler** 

Last component to achieve parallel execution of sub-events timeframes algorithms (Geant4, digitization, reco)

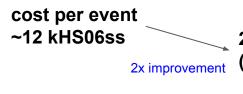


## ... and brings all **good features of an (ETL) build system such as**

- incremental execution
- restart from where last fail, ...



#### Latest multicore GRID performance


Where are we today in terms of cost and relative CPU share (PbPb)?

#### vanilla full sim

| G4 (in %) | digi (in %) | reco (in %) |
|-----------|-------------|-------------|
| ~85       | ~10         | ~5          |

full sim with signal enhancement through embedding (planned standard for physics analysis)

| G4 (in %) | digi (in %) | reco (in %) |
|-----------|-------------|-------------|
| ~24       | ~54         | ~22         |



24 kHS06s (Run2) (8-10) x improvement

cost per event ~ 3 kHS06s or less

- Future Factor 2 G4 improvement => 1.14 overall impact
- Limited impact unless rest further optimized

Hypothetical factor 2 G4 improvement
 ~1.73 overall throughput increase



#### Where we could gain or profit from in future

#### Geant4:

- VecGeom navigation (estimated 15-20% in transport time)
- Fast ML GAN sim for certain detectors
  - clearly interested in standard toolkit and API within Geant4
  - limited to a few % since since no "outstanding" detectors except ZDC
- Better community "tooling", e.g.: automatic optimization frameworks
  - e.g., automatic cut/secondary tuning according to user objective would be tremendously useful

#### Digitization on GPU:

- digitization share still very relevant when using signal enhancement
- o good candidate for GPU; often natural massive parallelism
- will become important as soon as GPUs become ubiquitous in computing resources

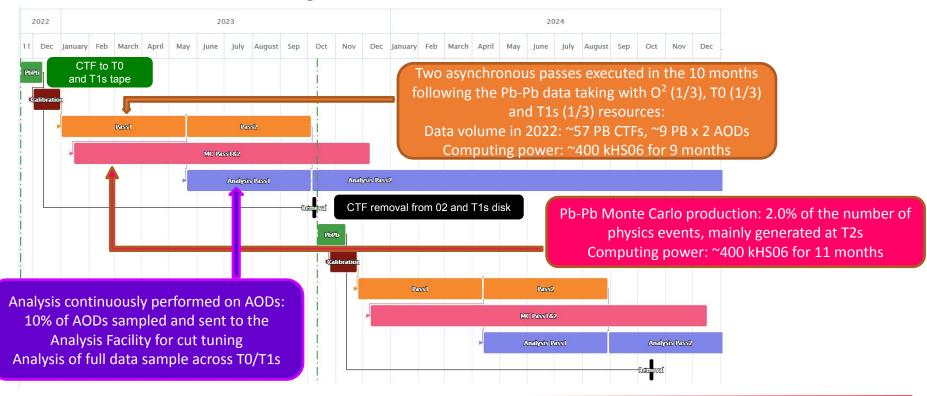


#### Summary

- ALICE Run3/4 simulation program is challenged by a much higher data rate
- We cannot keep the ratio MC / recorded data at the same level as before, using Run2 approach and software
- To bridge gap, managed to undertake transformations / optimization on a holistic level, achieving
  - HPC ready transport simulation
  - Considerably faster digitization
  - Efficient multicore GRID task scheduler
  - Signal embedding and event biasing framework to enhance MC samples in number and purity
- Future optimization in Geant4 now more impactful to us in standard full simulation (minimum bias)



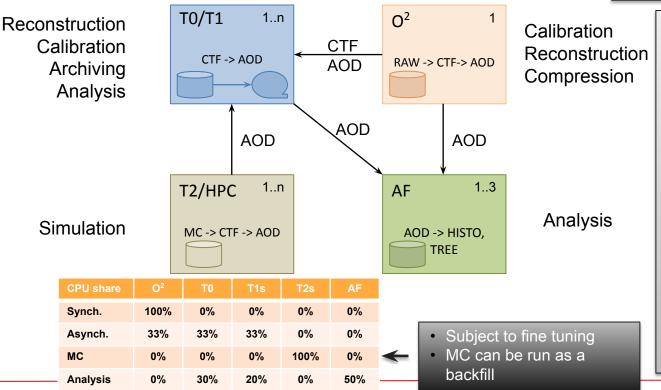
## Backup section




#### **ALICE and Fast-Sim**

- Embedding / biasing as a means to accelerate vanilla full sim
- Have a group working on ML method's in shower generation
- Custom "fast sims" have been used in various detector studies (typically for upgrade TDRs)
- To this date, no systematic demand for "frameworked" parametric fast-sim by physics groups/analysis
- Currently preparing integration of Delphes into Run3 framework to enlarge offering




#### Pb-Pb processing plan





#### **ALICE Run 3 Computing Model**

#### Grid Tiers will be mostly specialized for given role



2/3s of CTFs processed by  $O^2 + TO$  and archived at TO:

1/3 of CTFs exported, archived and processed on T1s;

One calibration (sync.) and two reconstruction passes (async.) over raw data each year;

The goal is to minimize data transfer and optimize processing efficiency

10% of AODs sampled and sent to the Analysis Facility for quick analysis and cut tuning;

Analysis of full data sample across T0/T1s only performed upon Physics Board approval.

O<sup>2</sup> TDR and addendum