
LHCb input
Eduardo Rodrigues, Nicole Skidmore

for the LHCb collaboration

HL-LHC Analysis Mini-Workshop, All@Home, May 4th 2021



“Real-Time Analysis” paradigm for triggering in Run 3

● Recall - Run 2 trigger:
○ Particle collisions at ~40 MHz, ~55 kB per collision,

collected 9 fb-1, > 1012 b hadrons produced in the acceptance
● From Run 3 onwards:

○ 0.6 GB/s -> 10 GB/s to storage, first-level trigger in GPUs, aim to collect ~10 fb-1 / year

https://lhcbproject.w
eb.cern.ch/lhcbproject/P

ublications/f/p/LH
C

b-FIG
U

R
E

-2020-016.htm
l 

https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2020-016.html


Real-Time Analysis - forward looking

● A full software trigger is here to stay
● Likewise concerning GPUs for HLT(1)

○ “(1)” rather than “1” because it is not impossible to have a full HLT in GPUs
on a timescale of a decade

■ “The sky is the limit”
■ FPGAs e.g. for clustering, are already being investigated, BTW. Even IPUs for ML ... 

● More analysis will move “closer to the detector”
○ For Run 3, HLT2 is the terrain of selections but in the future …? Again, “the sky is the limit”

● Examples:
○ Run even more ML on the GPUs
○ Perform flavour tagging calibrations online (atop the alignment and calibrations for Run 3)

if large enough samples become available to the buffer given the lumi increase?



Offline processing & analysis in Run 3 - two core ideas

● Centralised trimming and skimming (aka LHCb’s “Sprucing”)
○ A fraction of HLT2 outputs require extra processing before samples handed over to analysts

● Centralised analysis productions for physics WGs and users
○ Ensures e.g. better validation hence more efficient use of resources

● LHCb has a diverse range
of analyses 

○ Event sizes in Run 2:
18kB/evt -> 83kB/evt on disk
(eg. CEP -> B to open charm event)

○ Throughput to analysis (kB/s)
scales with luminosity

https://lhcbproject.w
eb.cern.ch/lhcbproject/P

ublications/f/p/LH
C

b-FIG
U

R
E

-2020-016.htm
l 

https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2020-016.html


Offline processing & analysis - forward looking
● Run-3 paradigm is here to stay,

though it will evolve as our trigger strategy evolves
○ Unlikely to ever have all processing fully in HLT
○ And centralised production of ntuples seems anyway promising as the default 

■ E.g. better validation
● If full HLT evolves to running on a GPU farm, Sprucing will likely follow (shared framework)

○ This would mean a full (central) data processing on GPUs!
■ Requirement to then be able to use GPUs efficiently also on the Grid?

● To set a scale: a typical Run 2 “Sprucing” campaign running over the full dataset takes ~2 months
○ This cannot scale as-is in the years to come

● Diversity of analyses will continue to be a reality 
○ Throughput to analysis (kB/s) scales with luminosity

● Analysis preservation guidelines and “constraints” are also being included within offline 
processing & analysis. Expect these to be streamlined and become in many cases requirements 
rather than guidelines



Common Software

● Stating the obvious for completeness
○ Gaudi and ROOT are central pieces of our software stack
○ And that’s not going to change
○ HLT1 on GPU farm with Allen software framework. Our baseline.

To be seen if other experiments get interested, in which case it can become a common 
framework …
TL;DR: invitation to get involved! E.g. open Gaudi-Allen workshop last year with LHC exps.

○ For Run 3 (and most likely beyond) several calibration tools (e.g. PID)
will be using Data Science tools (several Scikit-HEP packages, SciPy packages, JAX, etc.)

● Stack development increasing involves only interacting with Python 
○ All underlying C++ has Python wrappers
○ E.g. all application configuration and running of jobs done in Python

● We also now use Conda extensively

https://gitlab.cern.ch/lhcb/Allen
https://indico.cern.ch/event/872910/
http://scikit-hep.org/
https://www.scipy.org/


Analysis in Python & the Python ecosystem

● Already in 2018 an LHCb-wide survey showed that ~50% of analysts
do their analyses in Python

○ ROOT and many Data Science tools such as SciPy, scikit-learn, TensorFlow, etc.
● The Data Science ecosystem is ever more used,

and we assume this tendency will only get stronger in the next few years
● To this should be added our domain-specific tools:

○ Scikit-HEP project packages
○ zfit fitting package for CPUs as well as GPUs

● Hence we will rely on the “PyHEP ecosystem” (we already do for Run 3)
○ Several LHCb colleagues leaders or strongly involved in Scikit-HEP and zfit

● Already now, clear that we need e.g. to fit with GPUs
● Big question: how will the experiments help maintain these new tools, if?

○ Similar issue as for tools such as FastJet that we consume but do not maintain (?)

https://hepsoftwarefoundation.org/workinggroups/pyhep.html


Training and development

● Students are no longer familiar with C++
○ Ever increasing trend since a handful of years 
○ Serious implications for maintenance, especially that our HLT2 and HLT1 GPU

are almost entirely written in C++ (configuration done in Python). We need more C++ experts!
○ How does this affect stack development going forward? Common issue

● Using GPUs for analysis needs to be incentivised
by sufficient training/teaching material

○ Obviously an ever bigger opportunity for LHCb with its GPU farm for HLT1
○ Development of HLT1 for Run 3 involving Research Software Engineers was a challenge


