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Part 1: Trends in data analysis software
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What were the physicists doing in this decade?

Primary language of GitHub repos created by users who forked CMSSW:
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Consistent with survey results (PyHEP 2020 participants)

"Which do you use regularly (> 10% of your work)?"

CorCt+
Python

Matlab

Javascript or other browser-based (e.g. TypeScript, CoffeeScript)

Verilog, VHDL, or other hardware description language
R

Java or other JVM-based (e.g. Kotlin, Scala, Clojure)
Perl

PHP

C#

Julia

Go

Swift

Rust

Ruby

Haskell

Raw assembly or machine code

Other, not listed above '
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Pythonic analysis is mainstream, and the trend preceded Uproot ka

GitHub repos matching search strings: Pythonic analysis is as common as “TFile”.

[

f=)}

o
s

o
N
o

CMS physicists' repositories with search hits

20 A

=

N

o
L

=

o

o
L

80

60

401

¢ "TFile" (C++)
¢ "TFile" (Python)
¢ ‘import ROOT"

"uproot”
X "numpy"
¥ "matplotlib"
% "pandas"

LCMSSW. moved to.GitHub: .......o........ ... i

-..-.yyéXyX

T
2011 2012 2013 2014

T T T T T T
2015 2016 2017 2018 2019 2020 2021

Repository creation date

6/14



This is also consistent with self-reported usage

"Do you use these software packages?"

NumPy
Matplotiib
SciPy

Jupyter

Pandas
SciKit-Learn
IPython
TensorFlow
Keras
SciKit-Optimize
h5py (HDF5)
Seaborn
PyTorch
SciKit-Image
Numba

xarray

ROOT in C++

ROOT through PyROOT
Uproot

root-numpy
root-pandas

root;
il No selection

iminuic Don't know what it is
Awkward Array Never
particle Through dependencies only
Coffea Regularly
pyhf All the time
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Part 2: Status of Pythonic HEP software
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Not a single group, but mostly shared vision

Most of the developers of Pythonic HEP software
» aim for small package granularity, providing tools that address
a well-defined class of problems at one level of abstraction,

» aim for interoperability with each other and the larger
Pythonic ecosystem,

» avoid overlapping functionality, by communicating through
HSF and IRIS-HEP channels,

» focus on domain-specific problems that won't be addressed by
non-HEP software or focus on connecting HEP-specific tools
to the larger ecosystem.
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Scikit-HEP: a clearinghouse for Pythonic HEP software

DIANA/HEP Meeting - 27 Feb 2017
The Scikit-HEP project — 5 « pillars »

Simulation
Wrappers for Monte Carlo engines
and other generators of

simulated data
Datasets
data in various sources, such as

ROOT, Numpy/Pandas, databases,
wrapped in a common interface

Originally conceived as
a core package with
“affiliates” like AstroPy;

Aggregations R PTH HH "
J L mstoglgmgs andgotner “sufficient now It S JUSt afflllates
\ stat\st\cs’f that summarize or
Modeling e A common brand for
traditional fitting: Minuit, linear,
Visualization | ©emns sbr, neural net, ete. J packages that work
erece s seli % together and with the
to d3 and plot.ly P h
ython ecosystem.

They cover all grand topics ... !
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Scikit-HEP's 5 pillars today:

Simulation: other than numpythia and pyhepmec, this is mostly left to non-Python
packages (which fill files that can be read with Python).

Datasets: root—numpy, uproot, pylhe, awkward, as well as numpy and
pandas. Some use HDF5/h5py because of its recognition by ML tools.

Aggregations: boost-histogram/hist, coffea, fast-carpenter.

Modeling/fitting: by far, the most covered: pyhf (dozens of publications), iminuit,
zfit, hepstats, goofit, SModels, direct use of Pandas, ML...

Visualization: most modeling tools output to matplotlib, mplhep is widely used
as a dependency. coffea, hist, histoprint.

Should also add Distributed computing: some pyspark, but more dask, often
through coffea (future coffea-casa/ServiceX).

Should also add Acceleration/JIT-compilation: numba, jax, ROOT.RDataFrame.

Should also add HEP domain-specific: corrections in coffea, Lorentz vectors in

vector, PDG in particle, jet clustering in pyjet...
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Status/readiness for the HL-LHC:

Simulations: don't need to be in Python (much like event reconstruction).
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Breakdown by strategy s

Domain-specific stuff we do Connections to externals External libraries we use
» (super)histograms as » ROOT, LHE files +» » machine learning
fillable objects arrays, Pandas, ML > distributed computing
» HEP-style plots (pulls, » using ML packages to > JIT-compilation
Brazil, efficiency. . .) do HEP fits: | > autodifferentiation
» ansatz fitting, limit pyhf/combinetf . .
i ) ) P interactive notebooks
setting, discovery » extending Numba for
significance jagged arrays, Lorentz
> applying corrections, vectors, histogramming
clustering, Lorentz P> events — histograms
vector manipulation workflow in distributed

computing frameworks

» building Query Systems

out of standard parts
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Conclusions

The question is not quite, “Will the whole ecosystem be ready for the HL-LHC?"

Many pieces are in-use now, and they're growing to fill real analysis needs now.

» | personally know of ~10 analyses using Python almost exclusively
(CMS H — ~7, — uu, — cc, di-Higgs, top EFT, Dazsle analyses. .. ).

» There is a wave of such analyses gradually approaching publication.

160

From current trends, it looks like Pythonic
analysis will either predominate in Run 3
or stay evenly mixed with C++, it is today.
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