= PRINCETON (g iris
UNIVERSITY hep

Pythonic Data Analysis

Jim Pivarski

Princeton University — IRIS-HEP

May the 4™ be with you

1/14

Part 1: Trends in data analysis software

2/14

Pythonic data analysis in the HL-LHC era?

letters of intent to first beams LS1_ 2 LS2 —&-LS3 1Y

E E 7.5x nominal lumi
): R2 | RS | HL-LHC era
1990 2000 2010 2020 2030 2040
future >

3/14

Pythonic data analysis in the HL-LHC era?

letters of intent to first beams LS1_ ¢ 1S2 —g-1S3 LR
E E 7.5x nominal lumi

): R2 | RS | HL-LHC era

1990 2000 2010 2020 2030 2040
:'/ Python SCle \\ """"""""" S\
'.“ NumericPython Matplotlib AstroPy
R NumPy
"""""""" Pandas
---------------------- Jupyter
future >

3/14

Pythonic data analysis in the HL-LHC era?

letters of

intent to first beams LS1 g2 LS2 —

>
w

14 TeV

-LS3

7.5x nominal lumi

): R2 | RS | HL-LHC era

1990 2000 2010 2020
Python SciPy A S .
NumericPython Matplotlib AstroPy
R NumPy kS o
e Pandas :
HDF5 NS IrErnndemeeen ;_Jupytel:.'
N ROOT columnar I
________ databases Parquet
~~~~~~~~~~~~ Hadoop Spark
future

2040

Y

3/14



Pythonic data analysis in the HL-LHC era?

letters of intent to first beams LSt g Ls2 —g-LS3 L
% T 7.5x nominal lumi
R2 _R3_ HL-LHC era
1990 2000 2010 2020 2030 2040
f Python SciPy el .
i, NumericPython Matplotlib AstroPy
e S NumPy ‘
/ TN Pandas H
i HDF5 SsrrErnsdecheen. gupyter:
“._ ROOT columnar TTTERLL
--------- databases Parquet
""""""""" Hadoop Spark : :
future >

3/14



Pythonic data analysis in the HL-LHC era?

letters of intent to first beams

LSt ¢ 1S2 —p-1S3 AL
% T 7.5x nominal lumi
R2 _R3_ HL-LHC era
1990 2000 2010 _: @i, 2020 2030 2040
P D { ScikitHEP | %,
/ Python SciPy R %, Uproot -
\‘\Numenchthon Matplotlib AstroPy ".}.‘Awkward
__________________________ NumPy Ry Aray
T R S - Pandas “Coffea/
i HDF5 R N Jupyter; ===
“._ ROOT columnar T
e databases Parquet
""""""""" Hadoop Spark : :
future >

3/14



Pythonic data analysis in the HL-LHC era?

letters of intent to first beams LS1_g Ls2 —¢

1S3 14TeY
z E 7.5x nominal lumi
:: R2 _R3_ HL-LHC era
1990 2000 2010 : i... 2020 2030 2040
P D { ScikitHEP %,
/ Python SciPy \ Uproot =
\‘\Numenchthon Matplotlib AstroPy ".}“Awkward
__________________________ NumPy Ry Aray
T T e - Pandas “:‘(‘DOffea',"
i HDF5 B N k_JUthe[" """""
“.._ ROOT columnar UL
e databases Parquet
~~~~~~~~~ Hadoop Spark :

future

Y

3/14

What were the physicists doing in this decade?

Primary language of GitHub repos created by users who forked CMSSW:

400 -
® CandC++ : A

& Python

w
u
o

® Jupyter Notebook
300 - (total)

N
ul
o

= =
o %
s} o
|

Repositories created by CMS physicists per 90 days
u S
o o

. CMSSW.moved to GitHub.

--'nn.-'.nln:l
S

o

o A >) Q N
3% ,LQ’\ ,LQX ,LQ'\« ,LQ’L ,Lg’l
Repository creation date
4/14

Consistent with survey results (PyHEP 2020 participants)

"Which do you use regularly (> 10% of your work)?"

CorCt+
Python

Matlab

Javascript or other browser-based (e.g. TypeScript, CoffeeScript)

Verilog, VHDL, or other hardware description language
R

Java or other JVM-based (e.g. Kotlin, Scala, Clojure)
Perl

PHP

C#

Julia

Go

Swift

Rust

Ruby

Haskell

Raw assembly or machine code

Other, not listed above '

0 25 50 75 100 125 150 175
number of PyHEP 2020 survey respondents

5/14

Consistent with survey results (PyHEP 2020 participants)

'
'
| CorC++
'
H
H

Python

Matlab

Javascript or other browser-based (e.g. TypeScript, CoffeeScript)

Verilog, VHDL, or other hardware description language
R

Java or other JVM-based (e.g. Kotlin, Scala, Clojure)
Perl

PHP

C#

Julia

Go

Swift

Rust

Ruby

Haskell

Raw assembly or machine code

Other, not listed above '

0 25 50 75 100 125 150 175
number of PyHEP 2020 survey respondents

5/14

'
'
| CorC++
'
H
H

Python

Matlab

Javascript or other browser-based (e.g. TypeScript, CoffeeScript)
Verilog, VHDL, or other hardware description language
R

Java or other JVM-based (e.g. Kotlin, Scala, Clojure)
Perl

PHP

C#

Julia

Go

Swift

Rust

Ruby

Haskell

Raw assembly or machine code

Other, not listed above '

0

25 50 75 100 125 150
number of PyHEP 2020 survey respondents

175

"How often do you use Python relative to C or C++7?"

Half-and-half

More Python

More C++

Always C++

Neither

Always Python

5/14

Consistent with survey results (PyHEP 2020 participants)

"How often do you use Python relative to C or C++7?"

More C++

Javascript or other browser-based (e.g. TypeScript, CoffeeScript)

Verilog, VHDL, or other hardware description language
R

Java or other JVM-based (e.g. Kotlin, Scala, Clojure)
Perl

PHP

C#

Julia

Go

Swift

Rust

Ruby

Haskell

Raw assembly or machine code

Other, not listed above _

Half-and-half

Always C++

Neither

Always Python

More Python

"What are your main uses of Python?"

Physics analysis (other than machine learning)
Physics analysis with machine learning

Scripting routine tasks (e.g. job submission)

Interacting with collaboration software frameworks (e.qg. configuation)
Non-physics data analysis

Computing infrastructure (e.g. GRID middleware, analyzing log files)
Developing general libraries for others to use

Demos for outreach and education

Developing specialized applications (e.g. dashboards)

Other uses, not listed above

0

25 50 75 100 125 150
number of PyHEP 2020 survey respondents

175 0 50 100 150 200
number of PyHEP 2020 survey respondents

250

5/14

Consistent with survey results (PyHEP 2020 participants)

"How often do you use Python relative to C or C++7?"

More C++

Half-and-half
Always C++
Javascript or other browser-based (e.g. TypeScript, CoffeeScript) Jl Neither
Verilog, VHDL, or other hardware description language i
Ry Always Python
Java or other JVM-based (e.g. Kotlin, Scala, Clojure) More Python
Perl

PHP CoTTTTTTITTI T "What are your main Uses of Python?" '

c# E Physics analysis (other than machine learning) E

Julia | Physics analysis with machine learning !

Go -S-cr-iptlng routine task-s-(e-.g- job submlsslon)- T
Swit Interacting with collaboration software frameworks (e.qg. configuation)
Non-physics data analysis

Rust
Computing infrastructure (e.g. GRID middleware, analyzing log files)
Ruby Developing general libraries for others to use
Haskell Demos for outreach and education
Raw assembly or machine code Developing specialized applications (e.g. dashboards)
Other, not listed above ‘- s Other uses, not listed above
0 25 50 75 100 125 150 175 0 50 100 150 200 250

number of PyHEP 2020 survey respondents number of PyHEP 2020 survey respondents

5/14

Pythonic analysis is mainstream, and the trend preceded Uproot ka

GitHub repos matching search strings: Pythonic analysis is as common as “TFile”.

[

f=)}

o
s

o
N
o

CMS physicists' repositories with search hits

20 A

=

N

o
L

=

o

o
L

80

60

401

¢ "TFile" (C++)
¢ "TFile" (Python)
¢ ‘import ROOT"

"uproot”
X "numpy"
¥ "matplotlib"
% "pandas"

LCMSSW. moved to.GitHub:o........ ... i

-..-.yyéXyX

T
2011 2012 2013 2014

T T T T T T
2015 2016 2017 2018 2019 2020 2021

Repository creation date

6/14

This is also consistent with self-reported usage

"Do you use these software packages?"

NumPy
Matplotiib
SciPy

Jupyter

Pandas
SciKit-Learn
IPython
TensorFlow
Keras
SciKit-Optimize
h5py (HDF5)
Seaborn
PyTorch
SciKit-Image
Numba

xarray

ROOT in C++

ROOT through PyROOT
Uproot

root-numpy
root-pandas

root;
il No selection

iminuic Don't know what it is
Awkward Array Never
particle Through dependencies only
Coffea Regularly
pyhf All the time

50

"
o
o

150 200
number of PYHEP 2020 survey respondents

~N
G
o

300

w
a
o

Basic analysis tools

9 Machine learning
and stuff

9 Tools developed
in HEP

7/14

Part 2: Status of Pythonic HEP software

8/14

Not a single group, but mostly shared vision

Most of the developers of Pythonic HEP software
» aim for small package granularity, providing tools that address
a well-defined class of problems at one level of abstraction,

» aim for interoperability with each other and the larger
Pythonic ecosystem,

» avoid overlapping functionality, by communicating through
HSF and IRIS-HEP channels,

» focus on domain-specific problems that won't be addressed by
non-HEP software or focus on connecting HEP-specific tools
to the larger ecosystem.

9/14

Scikit-HEP: a clearinghouse for Pythonic HEP software

DIANA/HEP Meeting - 27 Feb 2017
The Scikit-HEP project — 5 « pillars »

Simulation
Wrappers for Monte Carlo engines
and other generators of

simulated data
Datasets
data in various sources, such as

ROOT, Numpy/Pandas, databases,
wrapped in a common interface

Originally conceived as
a core package with
“affiliates” like AstroPy;

Aggregations R PTH HH "
J L mstoglgmgs andgotner “sufficient now It S JUSt afflllates
\ stat\st\cs’f that summarize or
Modeling e A common brand for
traditional fitting: Minuit, linear,
Visualization | ©emns sbr, neural net, ete. J packages that work
erece s seli % together and with the
to d3 and plot.ly P h
ython ecosystem.

They cover all grand topics ... !

10/14

Scikit-HEP's 5 pillars today:

Simulation: other than numpythia and pyhepmec, this is mostly left to non-Python
packages (which fill files that can be read with Python).

Datasets: root—numpy, uproot, pylhe, awkward, as well as numpy and
pandas. Some use HDF5/h5py because of its recognition by ML tools.

Aggregations: boost-histogram/hist, coffea, fast-carpenter.

Modeling/fitting: by far, the most covered: pyhf (dozens of publications), iminuit,
zfit, hepstats, goofit, SModels, direct use of Pandas, ML...

Visualization: most modeling tools output to matplotlib, mplhep is widely used
as a dependency. coffea, hist, histoprint.

Should also add Distributed computing: some pyspark, but more dask, often
through coffea (future coffea-casa/ServiceX).

Should also add Acceleration/JIT-compilation: numba, jax, ROOT.RDataFrame.

Should also add HEP domain-specific: corrections in coffea, Lorentz vectors in

vector, PDG in particle, jet clustering in pyjet...
11/14

Status/readiness for the HL-LHC:

Simulations: don't need to be in Python (much like event reconstruction).

12/14

Status/readiness for the HL-LHC:

Simulations: don't need to be in Python (much like event reconstruction).
Datasets: mostly covered, especially as minimalist formats like NanoAOD catch on.
Pythonic access to RNTuple will be needed and is in development.

12/14

Status/readiness for the HL-LHC:

Simulations: don't need to be in Python (much like event reconstruction).
Datasets: mostly covered, especially as minimalist formats like NanoAOD catch on.
Pythonic access to RNTuple will be needed and is in development.
Aggregations: need better interop between boost-histograms and ROOT histograms.
Also, common usage is tending toward “superhistograms,” collections
that describe systematic variations that ought to have shared metadata.

12/14

Status/readiness for the HL-LHC:

Simulations: don't need to be in Python (much like event reconstruction).
Datasets: mostly covered, especially as minimalist formats like NanoAOD catch on.

Pythonic access to RNTuple will be needed and is in development.

Aggregations: need better interop between boost-histograms and ROOT histograms.
Also, common usage is tending toward “superhistograms,” collections
that describe systematic variations that ought to have shared metadata.

Modeling/fitting: well-covered: needs are highly specialized and practitioners write
their own packages. scikit-hep/cookie simplifies package-creation.

12/14

Status/readiness for the HL-LHC:

Simulations: don't need to be in Python (much like event reconstruction).
Datasets: mostly covered, especially as minimalist formats like NanoAOD catch on.

Pythonic access to RNTuple will be needed and is in development.

Aggregations: need better interop between boost-histograms and ROOT histograms.
Also, common usage is tending toward “superhistograms,” collections
that describe systematic variations that ought to have shared metadata.

Modeling/fitting: well-covered: needs are highly specialized and practitioners write
their own packages. scikit—-hep/cookie simplifies package-creation.

Visualization: in rapid development now, and mostly centralized in a few packages.

12/14

Status/readiness for the HL-LHC:

Simulations: don't need to be in Python (much like event reconstruction).
Datasets: mostly covered, especially as minimalist formats like NanoAOD catch on.

Pythonic access to RNTuple will be needed and is in development.

Aggregations: need better interop between boost-histograms and ROOT histograms.
Also, common usage is tending toward “superhistograms,” collections
that describe systematic variations that ought to have shared metadata.

Modeling/fitting: well-covered: needs are highly specialized and practitioners write
their own packages. scikit—-hep/cookie simplifies package-creation.

Visualization: in rapid development now, and mostly centralized in a few packages.

Distributed computing: early experiments with a wide variety of options are mostly
narrowing on Dask, though | think we should keep an eye on Ray. The
Query System concept is in rapid development in IRIS-HEP /ServiceX.

12/14

Status/readiness for the HL-LHC:

Simulations: don't need to be in Python (much like event reconstruction).
Datasets: mostly covered, especially as minimalist formats like NanoAOD catch on.

Pythonic access to RNTuple will be needed and is in development.

Aggregations: need better interop between boost-histograms and ROOT histograms.
Also, common usage is tending toward “superhistograms,” collections
that describe systematic variations that ought to have shared metadata.

Modeling/fitting: well-covered: needs are highly specialized and practitioners write
their own packages. scikit—-hep/cookie simplifies package-creation.

Visualization: in rapid development now, and mostly centralized in a few packages.

Distributed computing: early experiments with a wide variety of options are mostly
narrowing on Dask, though | think we should keep an eye on Ray. The
Query System concept is in rapid development in IRIS-HEP /ServiceX.

Acceleration: Awkward Arrays and Lorentz vectors can be JIT-compiled with Numba;
histogramming is next. Awkward Arrays should also become interoperable
with RDataFrame so we have both Python and C++ JIT-compilation.

12/14

Status/readiness for the HL-LHC:

Simulations: don’t need to be in Python (much like event reconstruction).
Datasets: mostly covered, especially as minimalist formats like NanoAOD catch on.

Pythonic access to RNTuple will be needed and is in development.

Aggregations: need better interop between boost-histograms and ROOT histograms.
Also, common usage is tending toward “superhistograms,” collections
that describe systematic variations that ought to have shared metadata.

Modeling/fitting: well-covered: needs are highly specialized and practitioners write
their own packages. scikit—-hep/cookie simplifies package-creation.

Visualization: in rapid development now, and mostly centralized in a few packages.

Distributed computing: early experiments with a wide variety of options are mostly
narrowing on Dask, though | think we should keep an eye on Ray. The
Query System concept is in rapid development in IRIS-HEP /ServiceX.

Acceleration: Awkward Arrays and Lorentz vectors can be JIT-compiled with Numba;
histogramming is next. Awkward Arrays should also become interoperable
with RDataFrame so we have both Python and C+4-+ JIT-compilation.

HEP domain-specific: coffea covers each use-case before it gets its own library. 216

Breakdown by strategy s

Domain-specific stuff we do Connections to externals External libraries we use
» (super)histograms as » ROOT, LHE files +» » machine learning
fillable objects arrays, Pandas, ML > distributed computing
» HEP-style plots (pulls, » using ML packages to > JIT-compilation
Brazil, efficiency. . .) do HEP fits: | > autodifferentiation
» ansatz fitting, limit pyhf/combinetf . .
i)) P interactive notebooks
setting, discovery » extending Numba for
significance jagged arrays, Lorentz
> applying corrections, vectors, histogramming
clustering, Lorentz P> events — histograms
vector manipulation workflow in distributed

computing frameworks

» building Query Systems

out of standard parts
13/14

Conclusions

The question is not quite, “Will the whole ecosystem be ready for the HL-LHC?"

Many pieces are in-use now, and they're growing to fill real analysis needs now.

» | personally know of ~10 analyses using Python almost exclusively
(CMS H — ~7, — uu, — cc, di-Higgs, top EFT, Dazsle analyses. ..).

» There is a wave of such analyses gradually approaching publication.

160

From current trends, it looks like Pythonic
analysis will either predominate in Run 3
or stay evenly mixed with C++, it is today.

4 CTRile" (C++)

4 TRile" (Python)

4 “import ROOT*
“uproot*

¥ *numpy"
“matplotiib"

% "pandas”

[, CMsSW. moved to GitHub,

an
2011 2012

2013 2014 2015 2016 2017 2018 2019 2020 2021
Repository creation date

14/14

