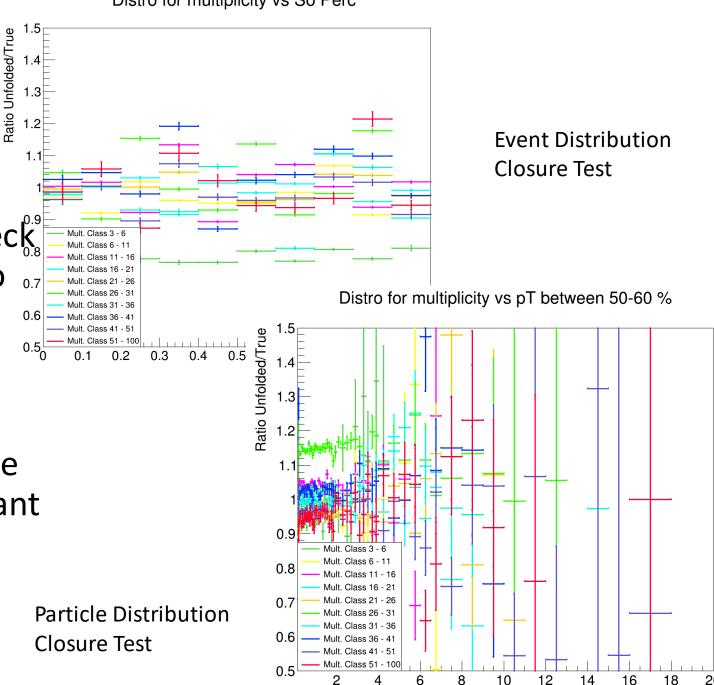
p T spectra as a function of Multiplicity and Transverse Spherocity in pp collisions using a Bayesian Unfolding

Background

• I rewrite the unfolding method from scratch to check if there was an error, and so of far I have not found any.

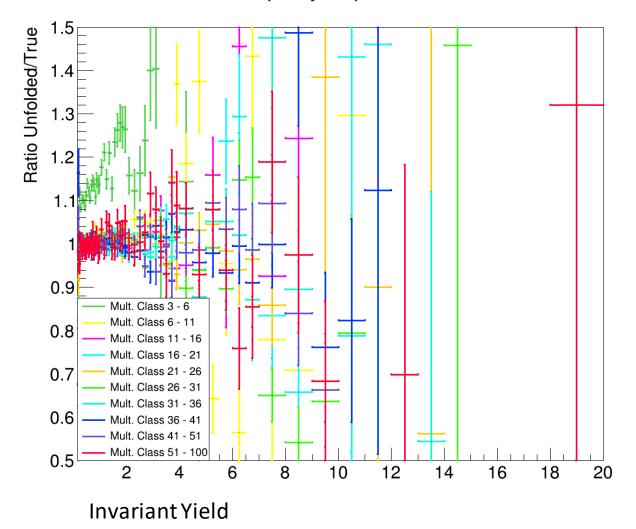
 Both unfoldings, of particle tracks and events have some major issues, but the invariant yield (which is a ratio of the two) kind of works.



Background

 I rewrite the unfolding method from scratch to check if there was an error, and so far I have not found any.

 Both unfoldings, of particle tracks and events have some major issues, but the invariant yield (which is a ratio of the two) kind of works. Distro for multiplicity vs pT between 40-50 %



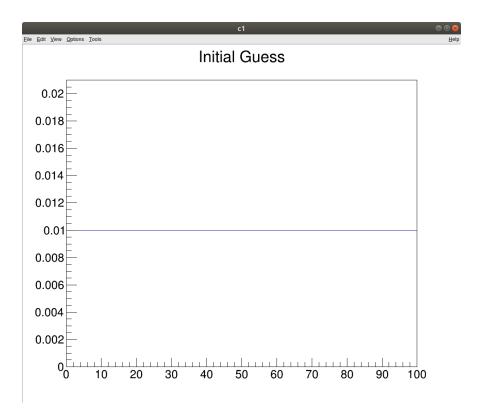
Closure Test

D'Angostini Original Paper

This paper presents a different approach, based on Bayes' theorem, recognized by statisticians as the most powerful tool for making statistical inferences. The main advantages with respect to other unfolding methods are:

- it is theoretically well grounded;
- it can be applied to multidimensional problems;
- it can use cells of different sizes for the distribution of the true and the experimental values;
- the domain of definition of the experimental values may differ from that of the true values;
- it can take into account any kind of smearing and migration from the true values to the observed ones;
- it gives the best results (in terms of its ability to reproduce the true distribution) if one makes a realistic guess about the distribution that the true values follow, but, in case of total ignorance, satisfactory results are obtained even starting from a uniform distribution;
- it can take different sources of background into account:
 - it does not require matrix inversion;
 - it provides the correlation matrix of the results;
- it can be implemented in a short, simple and fast program, which deals directly with distributions and not with individual events.

What if instead of using a uniform distribution as an initial guess, we use a very similar distribution to the expected one?



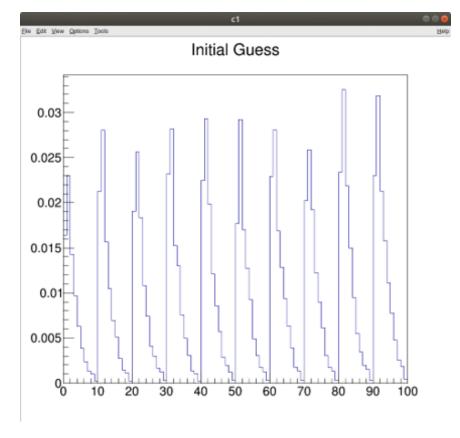
D'Angostini Original Paper

This paper presents a different approach, based on Bayes' theorem, recognized by statisticians as the most powerful tool for making statistical inferences. The main advantages with respect to other unfolding methods are:

- it is theoretically well grounded;
- it can be applied to multidimensional problems;
- it can use cells of different sizes for the distribution of the true and the experimental values;
- the domain of definition of the experimental values may differ from that of the true values;
- it can take into account any kind of smearing and migration from the true values to the observed ones;
- it gives the best results (in terms of its ability to reproduce the true distribution) if one makes a realistic guess about the distribution that the true values follow, but, in case of total ignorance, satisfactory results are obtained even starting from a uniform distribution;
- it can take different sources of background into account:
 - it does not require matrix inversion;
 - it provides the correlation matrix of the results;
- it can be implemented in a short, simple and fast program, which deals directly with distributions and not with individual events.

What if instead of using a uniform distribution as an initial guess, we use a very similar distribution to the expected one?

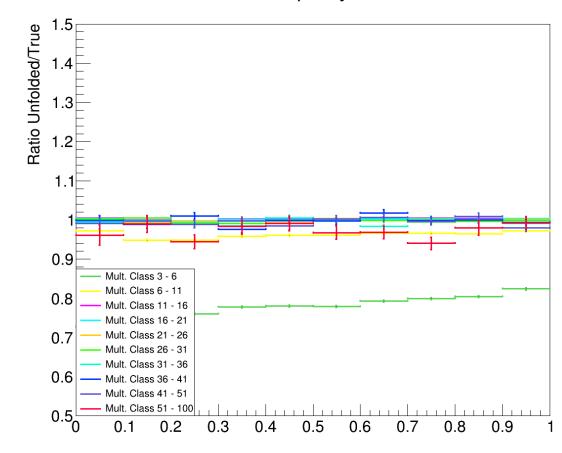
Like the measured one



Result: Event Unfolding with new guess (3 iterations)

Distro for multiplicity vs So Perc

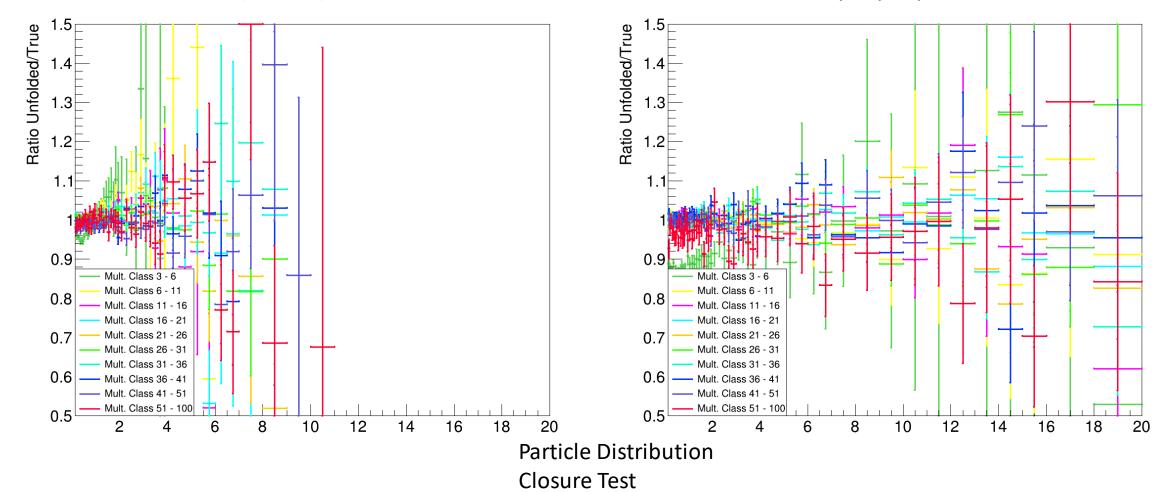
Event Distribution Closure Test



Particle Unfolding with new guess (3 iterations)

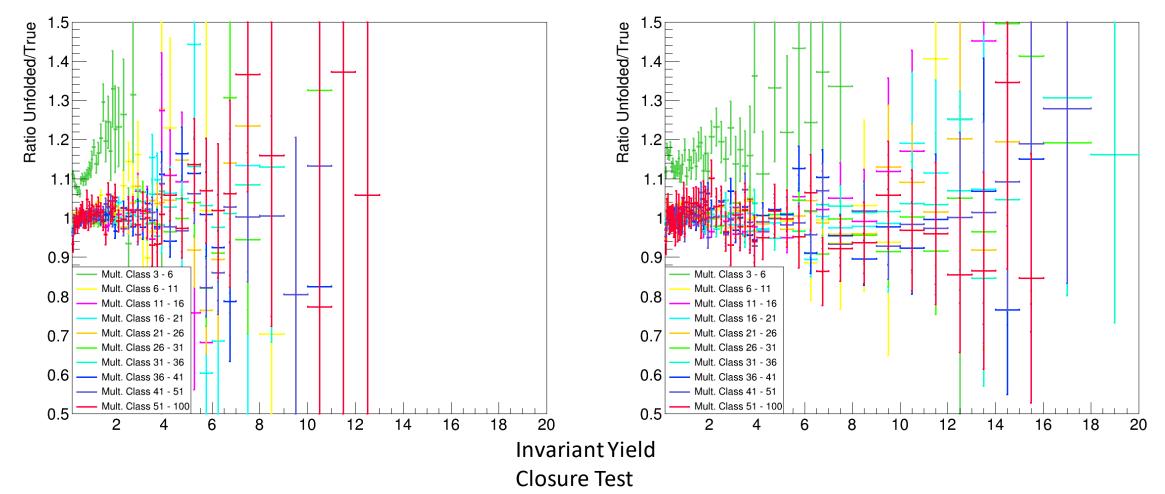
Distro for multiplicity vs pT between 90-100 %





Invariant Yield with new guess (3 iterations)

Distro for multiplicity vs pT between 90-100 %



Conclusions

- If we improve the guess, using the measure one distribution, we found a better behavior.
- Probably drop the first multiplicity bin

after/before Physics Selection (Spherocity Independent)

