

Object-reconstruction optimisation at Muon Collider

on behalf of the **Muon Collider Detector and Physics Group**

Session BO8: Muon Collider Symposium I

N. Bartosik

INFN Torino

Beam Induced Background: $\sqrt{s} = 1.5 \text{ TeV}$

For 0.75 TeV beams at $2 \times 10^{12} \mu$ /bunch $\rightarrow 4 \times 10^{5}$ muon decays/m in a single beam crossing **Essential component is the MDI: tungsten nozzles** reduce the BIB rate by a factor ~500

Currently using a BIB sample simulated by MAP with MARS15 for $\sqrt{s} = 1.5$ TeV

→ soon to transition to the independent simulation with FLUKA + FlukaLineBuilder

Result of a simulation \rightarrow list of stable particles reaching the detector region in a single bunch crossing (BX) (mostly soft photons, neutrons, electrons)

- collected at the outer surface of the detector and the MDI
- $2 \times 180M$ particles \rightarrow full simulation needed for a realistic detector-performance estimation

Detector geometry based on the CLIC design [DD4hep]

Tungsten nozzles: forward acceptance >10°

High-granularity calorimeter

- ECAL: 40 layers of W + Si
- HCAL: 60 layers of Fe + scintillator

All-silicon tracker: B = 3.57 T

double-layer vertex detector

Nazar Bartosik

- see the talk by C. Curatolo

Simulation software tack: ILCSoft

Software framework of the CLIC experiment chosen as a starting point Key components of the full-simulation physics analysis:

- 2. simulation of the detector response to the incoming particles
- 3. conversion of simulated hits to reconstructed hits
- 4. reconstruction of tracks/jets/particles

All the simulation and reconstruction done within a single <u>framework</u> Most of custom packages specific to the Muon Collider maintained in the public Muon Collider Software repository Large overlap with the <u>Key4HEP</u> stack: planning full transition in the future

Centralised software revisions distributed through Docker and Singularity containers + manual build instructions Tutorial on the simulation software was organised recently: September 30, 2020

Nazar Bartosik

BIB has several characteristic features \rightarrow crucial for its effective suppression

- **Predominantly very soft particles** (p << 250 MeV) except for neutrons 1. fairly uniform distribution in the detector \rightarrow no isolated signal-like deposits → conceptually different from pile-up contributions at the LHC
- **2.** Significant spread in time (few ns + long tails up to a few μ s) $\mu^+\mu^-$ collision time spread: ~30ps (defined by the muon-beam properties) \rightarrow strong handle on the BIB \rightarrow requires state-of-the-art timing capabilities
- **3.** Large spread of the origin along the beam different azimuthal angle wrt the detector surface + affecting the time of flight to the detector

Sophisticated detector technologies and event-reconstruction strategies required to exploit these features

4D coordinates of the Interaction Point (IP) define the reference to **2** and **3**

Nazar Bartosik

BIB properties: single beam crossing

BIB Particles

10⁶

50

Object-reconstruction optimisation at Muon Collider

200

150

100

3

4

GEANT4 hits produced separately for signal and BIB → merging + detector effects added during digitisation → two distinct classes of hits: CalorimeterHit (ECAL, HCAL, Muon detector) + TrackerHit (Tracking detector)

- **1.** Calorimeter hits: cell ID + E_{dep} + timestamp large cells ($0.5 \times 0.5 - 3 \times 3$ cm) \rightarrow manageable # of cells \rightarrow merge hits within the fixed readout time window
- 2. TrackerHits: sensor ID + E_{dep} + position + time and more small pixels (50 \times 50 μ m) to macro-pixels (0.05 \times 10 mm) \rightarrow too many channels to treat them individually
 - **2.1.** Simple 4D smearing by $\sigma_U | \sigma_V | \sigma_t$

simple and fast \rightarrow the present baseline NO charge sharing, pile-up and electronics effects

2.2. Realistic simulation of sensor + readout-chip response

slower \rightarrow in the development-testing stage allows cluster-shape analysis for further BIB suppression effects of readout-electronics properly taken into accounts

Nazar Bartosik

Hit digitisation: GEANT4 \rightarrow RecHit

Workflow optimisation: detector simulation

BIB introduces ~10⁸ particles in a single event \rightarrow a tremendous computation load: CPU, RAM, disk space \rightarrow contributions not relevant for the end result have to be **excluded from the chain** as early as possible

No GEANT4 simulation of particles arriving too late hits at t > 10ns will be outside the realistic readout time windows \rightarrow accounting for TOF: particles with t > 25ns at MDI are ignored

2. No GEANT4 simulation of slow neutrons

low-energy neutrons reach the calorimeter too late \rightarrow neutrons with $E_{kin} < 150 \text{ MeV}$ can be safely excluded

3. Trimming of SimHits before digitisation

×10 less RAM

many SimHits don't pass the readout timing cuts during digitisation \rightarrow storing trimmed SimHit collections \rightarrow less processing during digitisation

×6 less CPU

×20 less CPU

 $+3\sigma$ window for SimHits to account for digitisation

Object-reconstruction optimisation at Muon Collider

1

10

Reconstruction of tracks suffers from large combinatorial background → suppression of BIB hits is crucial to reconstruct events in reasonable time

- Selection of hits in the narrow time window tailored to the sensor position → limited by the tracker time resolution + acceptance for slow particles
- 2. Selection of hit doublets aligned with the IP (double layers in the Vertex Detector) \rightarrow limited by the IP position resolution \rightarrow requires multi-stage tracking strategy

Determine IP position with faster track reconstruction

- only central region
- inward seed from ROI
- **3.** Cluster-based BIB suppression (shape and charge of hit clusters) sensitivity to the particle direction in a single layer \rightarrow requires realistic Tracker digitisation

All these strategies require a challenging detector design 0.02 → high spatial and time resolution + low occupancy ← more in the talk by H. Weber

Nazar Bartosik

Track reconstruction: optimisation strategies

et reconstruction: calorimeters

About 6 TeV (2.5 TeV) of energy deposited in ECAL (HCAL) by BIB \rightarrow effective BIB subtraction necessary for jet reconstruction

Timing can be exploited

BIB particles arrive later, but shower development takes time \rightarrow sharp time cut is not the best solution

Depth profile is different 2.

BIB particles are stopped earlier inside the calorimeter

 \rightarrow longitudinal segmentation is crucial

Optimal BIB suppression achievable with multivariate analysis techniques

Currently average BIB contribution is parameterised as a function of the azimuthal angle and depth \rightarrow subtracted from the total deposition ← more in the talk by L. Sestini

Nazar Bartosik

Fraction of muons in the the BIB is **fairly small**

Seeding from muon clusters required for efficient muon-track reconstruction

planning to extend tracking algorithms to support seeding from extrapolated muon clusters

Nazar Bartosik

Muon reconstruction: PANDORA particle flow

Beam-induced background poses significant computational challenges at Muon Collider

Current simulation studies are based on the iLCSoft framework

planned transition to Key4HEP in the future

BIB suppression crucial at every step of event simulation and reconstruction

- Track reconstruction is by far the most CPU-intensive and time consuming component
 - intelligent solutions for making it more efficient are under development

Innovative object-reconstruction strategies are necessary that consistently use data from multiple subdetectors

algorithms is crucial for the optimal performance of the experiment

- Maximum coherence between detector technologies and the corresponding reconstruction

