

Jet reconstruction performance at Muon Collider with beam-induced background

Lorenzo Sestini - INFN Padova

Donatella Lucchesi, Davide Zuliani, Alessio Gianelle, Paolo Andreetto, Laura Buonincontri, Nazar Bartosik, Nadia Pastrone, Massimo Casarsa, Maximilian Swiatlowski, Marco Valente, Ivano Sarra

Introduction

- **Jets are key objects in Muon Collider physics**: flagship measurements like double and triple Higgs productions have jets in the final state (**Laura's talk later**)!
- As you have seen from <u>Camilla's talk</u>, the beam-induced background (BIB) at a **Muon Collider is very different from the other accelerators**. 4•108 BIB particles per bunch crossing!
- The BIB produces a high hit multiplicity in the tracking system, resulting in a huge tracking combinatorial (Massimo's talk later and Hannsjörg's talk tomorrow).
- The jet reconstruction in this environment is challenging, but I am going to demonstrate that with the proper strategy is possible.

Design a detector at $\sqrt{s} = 1.5$ TeV

Vertex Detector (VXD)

- 4 double-sensor barrel layers $25x25\mu$ m2
- 4+4 double-sensor disks

Inner Tracker (IT)

- 3 barrel layers $50x50\mu m2$
- 7+7 disks "

Outer Tracker(OT)

- 3 barrel layers 50x50µm2
- 4+4 disks "

Electromagnetic Calorimeter (ECAL)

 40 layers W absorber and silicon pad sensors, 5x5 mm2

Hadron Calorimeter (HCAL)

 60 layers steel absorber & plastic scintillating tiles, 30x30 mm2

Check Simone's talk tomorrow for a full overview of the Muon Collider detector. For simulation software check Nazar's talk.

Beam induced background in calorimeters

Energy deposition in calorimeters per bunch crossing

- **BIB is diffused in the calorimeters**: at the ECAL barrel surface the flux is 300 particles/cm², most of them are photons with <E>=1.7 MeV.
- BIB occupancy is lower in HCAL with respect to ECAL.

Beam induced background in calorimeters

- BIB is out-of-time with respect to bunch-crossing.
- An acquisition time of [-0.25,+0.25] ns is assumed for the following studies.

- The released energy distribution of signal showers in the longitudinal direction shows different features with respect to BIB.
- It is clear that timing and longitudinal measurements play a key role in the BIB suppression.

BIB subtraction in ECAL for jet reconstruction

- ECAL is divided in (θ,d) regions: θ angle wrt z-axis, d distance wrt beam axis.
- In each region the average BIB hit energy E_{BIB} and standard deviation σ_{BIB} is determined.
- In signal+BIB reconstruction an ECAL hit is accepted if E_{HIT} > E_{BIB} +2 σ_{BIB} .
- The energy of the accepted hit is corrected: $E_{HIT} \rightarrow E_{HIT} E_{BIB}$.

Jet reconstruction in calorimeters

- ECAL and HCAL clusters are reconstructed with PandoraPFA (more info in backup).
- Calorimeters jets are clustered with the kt algorithm, radius R=0.5
- A simulated samples of $b\bar{b}$ -dijet + BIB is used for this study.

17/04/2021 Lorenzo Sestini 7 /12

Full jet reconstruction algorithm

- To recover the jet energy, we should perform the full reconstruction with tracking+calorimeters.
- In order to reduce the tracking combinatorial problem, a regional tracking strategy is employed.

Jet reconstruction performance

true jet η

- Good reconstruction efficiency at high transverse momentum (p_T) and low rapidities (η).
- A jet energy correction dependent from η and p_T is applied.
- 15% p_T resolution at high p_T . The p_T resolution worsen in the region near the nozzles.
- There are many rooms for optimization at all the stages of the reconstruction algorithm.
- On-going studies on jet identification and fake jet removal.

Lorenzo Sestini

0.35

0.3

Missing energy

- The calorimeter-jet configuration has been considered for studies on the missing energy measurement.
- $\Delta H^{miss} = H^{miss}_{BIB} H^{miss}_{noBIB} \rightarrow calculated in the transverse and longitudinal plane.$
- Preliminary studies show that the measurement in the transverse plane is more precise.

New calorimeter technologies for Muon Collider

- CRYLIN (CRYstal calorimeter with Longitudinal Information): specific design for Muon Collider ECAL.
- Cherenkov light, semi-homogeneous calorimeter: PbF₂ + copper + SiPM read-out.
- A first layer of LYSO could be used for time measurement. PbF₂ has good light yield (3 pe/MeV), fast signal (300 ps for muons, 50 ps for pions), radiation hard, relatively cheap.

Single Event

BIB parametrized as 1.7 MeV photons – 300 particles/cm² per event

Geant4 studies on-going.

Average of 1000 events

Real cell prototype in preparation at Laboratori Nazionali di Frascati in Italy.

Conclusions

- Jet reconstruction in the Muon Collider environment is challenging, but with the correct strategy is possible.
- I have presented preliminary results on the jet performance with b-jets, but several studies are on-going: tests on c-jets and light jets, algorithm optimization etc.
- There are also on-going studies on the jet heavy-flavor tagging.
- The Muon Collider can profit of innovative calorimeter technologies: we are studying them at simulation level, but tests with prototypes are in preparation.

Thanks for your attention!

Backup

PandoraPFA

M. A. Thomson Nucl.Instrum.Meth.A611:25-40,2009