

Track Reconstruction at a Muon Collider in the Presence of Beam-induced Background

P. Andreetto^(e), N. Bartosik^(g), L. Buonincontri^(k,e), <u>M. Casarsa</u>^(f), P. Chang^(f), A. Gianelle^(e), S. Jindariani^(c), K. Krizka^(f), L. Lee^(h), D. Lucchesi^(k,e), D. Meloni^(b), A. Montella^(l,f), S. Pagan Griso^(f), N. Pastrone^(g), E. Resseguie^(f), L. Sestini^(e), H. Weber^(c,d), D. Yu^(a)

(a) Brown University, (b) DESY, (c) FNAL, (d) Humboldt-Universität Berlin, (e) INFN-Padua, (f) INFN-Trieste, (g) INFN-Turin, (h) Harvard University, (l) LBNL, (l) University of California San Diego, (k) University of Padua, (l) University of Trieste

APS April Meeting "Quarks to Cosmos" Muon Collider Symposium April 17-20, 2021

Detector overview

Based on CLIC's detector model + the MDI and vertex detector designed by MAP.

■ S. Pagan Griso, "Design a detector for a Muon Collider experiment" in Session H08.1

The tracking system

Vertex detector (VXD)

- barrel: 4 cylindrical layers endcaps: 4 + 4 disks
- double-layer Si sensors: 25x25 μm² pixels 50 μm thick σ_{τ} = 30 ps

Inner Tracker (IT)

- barrel: 3 cylindrical layers endcaps: 7 + 7 disks
- Si sensors: $50 \mu m \times 1 mm macro-pixels$ $100 \mu m thick$ $\sigma_{\tau} = 60 ps$

Outer Tracker (OT)

- barrel: 3 cylindrical layers endcaps: 4 + 4 disks
- Si sensors: $50 \mu m \times 10 mm micro-strips$ $100 \mu m thick$ $\sigma_{\tau} = 60 ps$

H. Weber, "Studies of Tracker Timing and Granularity for the Muon Collider Environment" in Session H08.3

Tracker sim/reco software

- Current tracker full simulation and reconstruction software based on CLIC's ILCSoft:
 - parametric tracker digitization:
 - simple Gaussian smearing of the simulated hits' positions and times;
 - track reconstruction:
 - pattern recognition uses a conformal mapping + a cellular automaton search;
 - track parameters from a Kalman filter fit.
- New code developments for the muon collider soon available:
 - digitization with pixelated Si modules and a realistic Si sensor response;
 - new tracking algorithm with the ACTS library;
 - K. Krizka, "ACTS Tracking For Muon Collider" in Session Y07.9
 - object-reconstrucion optimization.
 - N. Bartosik, "Object-reconstruction optimisation at Muon Collider" in Session B08.3

cellular automaton

M. Casarsa

M. Casarsa

Beam-induced bkg in a nutshell

- The interaction of the beam muons decay products with the machine elements produces a pervasive flux of secondary and tertiary particles (mainly γ, n, e[±], h[±]) that eventually may reach the detector.
- The amount and characteristics of the beaminduced background (BIB) depend on the collider energy and the machine optics and lattice elements.

particles entering the detector per bunch crossing

Preliminary		E _{beam} = 750 GeV
photons	$(E_{y} > 0.2 \text{ MeV})$	4.3×10^{7}
neutrons	(E _n > 0.1 MeV)	5.4×10^7
electrons	(E _e > 0.2 MeV)	2.2×10^6
ch. hadrons	(E _h > 1 MeV)	$1.5 imes 10^4$
Bethe-Heitler	μ (E _{μ} > 1 MeV)	1.2×10^3

C. Curatolo, "Simulation of Beam Induced Background at Muon Collider and Study of its Properties" in Session B08.2

M. Casarsa

Hit timing selection

- Being the closest detector to the beamline, the tracker is affected the most by the BIB, which produces a huge number of spurious hits. If not mitigated, it could severely compromise:
 - the detector operations (too many data to be read out);
 - the track reconstruction performance (huge combinatorics).
- A big fraction of BIB particles reaches the detector out of time w.r.t. the bunch crossing \rightarrow exploit hit timing information.

Double-layer selection

- BIB particles are not produced in collisions at the beamspot.
- The double-layer structure of the VXD modules can be exploited to correlate hit pairs on adjacent sensors to estimate the incoming particle direction.

Tracking performace w/ single µ

- Sample: 10k single prompt muons with p = 10 GeV + BIB @ 1.5 TeV.
- Timing + double-layer selection applied.
- Tracking performed in a region of interest: only hits in a cone around the muon direction are used ($\Delta R = 0.05$).

M. Casarsa

Track reconstruction efficiency

- ullet Track reconstruction efficiency vs $p_{\scriptscriptstyle T}$ and polar angle.
- 10k single prompt muon samples + BIB @ 1.5 TeV:
 - ▶ p = 1, 10, 100 GeV;
 - $\theta = 13^{\circ}, 30^{\circ}, 89^{\circ}.$

Reconstructed p_T resolution

- Track p_{τ} resolution vs p_{τ} and polar angle.
- 10k single prompt muon samples + BIB @ 1.5 TeV:
 - ▶ p = 1, 10, 100 GeV;
 - $\theta = 13^{\circ}, 30^{\circ}, 89^{\circ}.$

Conclusion

- The exploitation of the full physical potential that a muon collider can offer will depend on the capacity of the experiment to mitigate and cope with the beam-induced background.
- As far as the tracker is concerned, preliminary full-simulation studies indicate that cutting-edge technologies and new sophisticated reconstruction algorithms will be needed to overcome the BIB:
 - optimized detector design integrated with the MDI: double (triple?) layers in the VXD;
 - in-chip real-time data reduction;
 - high granularity and precise timing information at every level;
 - new algorithms based on artificial-intelligence and machine-learning for pattern recognition and reconstruction of physical objects;
 - heterogeneous highly-parallelized computing model (CPU, GPU, FPGA).