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Outline

 Studies of Beam Instabilities and Associated Beam Loss on a High Intensity
Proton Synchrotron (Rob Williamson)

* Tune Plane Studies in the ISIS Synchrotron (Peter Griffin-Hicks)

* Impedance Characterisation at ISIS (David Posthuma de Boer)

* H-laserwire (Stephen Gibson)

* Analytical approaches to beam dynamics in VFFA (Max Topp-Mugglestone)
e Collimator Study in VFFA (Emi Yamakawa)

* Beam diagnostics for FETS-FFA (Emi Yamakawa)

e Testing Nonlinear Integrable Optics with IBEX (Jake Flowerdew)

* Creating Exact Multipolar Fields with Azimuthally Modulated RF Cavities
(Laurence Wroe)



Head-tail Instability

* Governed by impedance

« Characterised by mode structure

* Dependent on machine parameters e.g. tune and
chromaticity

» Dependent on beam parameters e.g. bunch length and
distribution
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ISIS Beam Bunches at ~ 2 ms

Head-Tall iIn User Operations

* Intensity limit due to associated loss Normal beam +

« Current instability mitigation flat bunch
. Large loss!
 Fast vertical tune ramp
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Experimental Campaign
» Rapid Cycling mode
* Observed in operation for many years
« Mitigated by tune ramp away from Qv = 4, injection painting and
longitudinal bunch asymmetry
» Observed head-tail mode (m=1) lower than predicted from Sacherer
(M=2)
 Storage ring mode (70 MeV)
 Remove complexity of ramping frequencies, rapid bunch changes
« Beam based impedance measurements
 Measurements made with single harmonic RF (h = 2, 4) and dual

Rob Williamson



Bunched Storage Ring:

Low Intensity,

» Baseband frequency of 80 kHz

 Growth also seen at other
sidebands around RF frequency
harmonics

* Matches data from other
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Bunched Storage Ring: i
Mode Structure

 Not consistent

« Small change of Qv alters

mode structure

 Modes 0, 1 and 2 observed
(mode 3 or 4 expected)

* Growth rates higher for lower

order modes

* Only portion of bunch

oscillating

Rob Williamson
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PyHEADTAIL simulations
* Bunched storage ring mode §§§§ Py e, é

e |dealised distributions |
Timea {us)

Q= 3.8700000

* 80 kHz narrowband to match observed
growth rate vs tune

 Mode m=3 and 4 observed as predicted

from theory .
» Entire bunch length oscillates as
EXpe Cted a 0 500 e e 1000 1500
 More physics required to match P e
experimental observations S 2
Time {ns)

Rob Williamson



Summary

* Vertical head-tail observed In ISIS
operation

 Mode unexpected and less than the
full bunch oscillating

* Lower Intensity, single harmonic
data in bunched storage ring mode
(70 MeV) shows:

 Mode number change with small
change in Q

* Instability only over a fraction of the
bunch

« Simulations with low frequency
narrowband and idealised
distributions match theory not
observations

Rob Williamson

Future Work

« Simulations using in-house
code and PyHEADTAIL
 Narrowband + resistive wall

 Effect of space charge (frozen,
PIC)

« Effect of injection dynamics

* Impedance measurements
(beam-based and bench) and
simulations

* Further comparison of
simulation with
theory/experiment

 Collaborative work with GSI
and CERN on various aspects



Tune Plane Studies in the ISIS Synchrotron

Understanding the importance of resonances for losses on a high intensity machine.

( )
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45

Set Q,

Tune scan experiments at ISIS measured beam loss in
the ISIS synchrotron against transverse tune for a low
intensity coasting beam.

Losses are associated with resonance lines, but they

The tune controls were studied analytically. A new
control method was derived from the linearised
transfer matrix model of ISIS. The controls were
tested by measuring tunes across a grid of settings.
The model was optimised to give the best fit of the
modelled tunes to the measured tunes.
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Plotting the beam loss against the modelled tune
transforms the plot to align the resonance lines with
those predicted by theory.

Understanding how to control the transverse tunes is
an important part of studying the mechanisms of
beam loss in the tune plane.
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Low intensity
Carry out improved tune control
experiments.
Develop single particle tracking
program, check key parameters.
Check against other experiments.
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Conduct detailed experiments to
assess the third integer resonance.
Investigate potential for third order
non-linear correction schemes.
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Peter Griffin-Hicks

Future Work

High intensity

* Increase intensity to observe space
charge effects.

* Use simulation tools to model space
charge in ISIS.

e Study bunched beams where
synchrotron motion varies the
incoherent space charge tune shift of
particles in the longitudinal tails.

» Study efficacy of single-particle non-
linear correction systems for high-
intensity beams.

[e.g. F. Asvesta et. al., “Identification and
characterization of high order incoherent
space charge driven structure resonances in
the CERN Proton Synchrotron”, PHYS. REV.
ACCEL. BEAMS 23, 091001 (2020)]

ISIS-II

Study resonances for single particle
and high intensity dynamics in ISIS-II
designs.

Develop non-linear error corrections
schemes.



Impedance Characterisation at ISIS

David Posthuma de Boer

« ISIS suffers from a vertical head-tail instability whose primary cause is a transverse dipolar
Impedance.

« My aim is to characterise the transverse dipolar impedance of ISIS, identify the source of this
Impedance and ideally resolve it whilst also investigating associated instability.

v Y
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« Previous measurements suggest there is a
significant low frequency, narrow band
Impedance. The focus is thus low frequency.

. Estimates for a number of pieces of equipment
highlighted on image have been obtained from
theory, numerical methods and experiment (highlighted).

o

Q SYNCHROTRON HALL |

- For theoretical estimates | have developed a
field matching code for obtaining the transverse
Impedance of multi-layer cylindrical structures
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David Posthuma de Boer

Estimates so far (1/2)

« Horizontal injection kicker magnet with
thick ferrite.

« RF Shields in ISIS dipole magnets.

- Low frequency transverse impedance
derived for cylindrical geometry.

o Collectors

— Eddy current probes for conductivity
measurement.

— Eddy current probes also used to investigate

metamaterials: https://www.nature.com/articles/s41598-020-
16447-x
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David Posthuma de Boer

Estimates so far (2/2)

o \ertical extract kickers.

—  Only measurement so far.

- Investigated impact of termination

resistors at power supply.
Other Work
. Early attempts at impedance localisation ¢ [
measurements using the beam and a kicker. [ //‘\ I
) ) E oo | e AL/ \ AN A o 3
— Try to identify local changes to betatron i A 7a\ RVARARE Y
phase shifts with intensity. ‘ RVIASINE

— Tests carried out using quadrupole magnets.
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Future Work

«  Find remaining resistive type impedances for elements around the ring and
make refinements where possible.

- RF shields in quadrupoles
- Bypass capacitors in all RF shields.
- Collector asymmetry

—  Possible measurements for RF Cavities

« CST simulations or alternative predictions for other structures
- BPMs
- Kicker simulations

. Beam Based measurements

- Continue attempts for impedance localisation measurements, and
perform simulations.

- More sophisticated method of finding location of impedances.

David Posthuma de Boer



H-laserwire prototype T. Hofmann et a e

* New instrument to measure the transverse emittance has been demonstrated with
RHUL-CERN built prototypes in recent years:

— Thomas Hofmann’s thesis, July 2017: https://cds.cern.ch/record/2282569/
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https://cds.cern.ch/record/2282569/

Dual laserwire installed at Linac4 ~ + romam et TR

Y "*N e TR

Non-interceptive emittance monitor g ‘ ‘T"Sél
— 4 laserwires: in X and Y at two locations ¥
— Commissioned in 2018 at 160 MeV Dececr TR
— Multi-channel diamond strip-detector
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Dual laserwire commissioning results e Sammy o, e

Laserwire Emittance Monitor — Latest data with 4 diamond detectors fully operational:

— First results showing vertical emittance for horizontal and vertical emittance reconstruction from both
two different settings of the line. stations:
Transfer line laser station, H emittance measurement Transfer line laser station, V emittance measurement
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Front End Test Sta nd: overview i s

Ion
Source

smaII bore quads
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vane bolted
RFQ: 3 MeV
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Front End Test Stand: manufacture at RHUL & RAL TR

* FETS is a 3MeV H- front end test stand for the ISIS-2 upgrade.

* Many RFQ and chopper components manufactured at RHUL,
and assembly at RAL supported by JAI-RHUL technical staff.

Successful RFQ bead-pull and field flattening:

S. Gibson



Front End Test Stand: laserwire s aiden, A gosco, s. Gibson et al

* Laserwire diagnostic simulations developed to inform
layout of interaction region and detector placement:
— Transverse laserwire for beam profile emittance

— Longitudinal laserwire for 6D parameter space:
Time-sliced transverse emittance
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t=-4, 5F = 10 t=-3, Sl o t=-2, 5l o

** [mem mrad]
|

R [mm mra:l]
** [mem mrad]

x ' [mm mrad]
x' [mm mmdl
x ' [mm mmdl

J ;“ll:l”l
| ||1

x ' [mm mrad]
x ' [mm mrad]
lmm mmdl

Time-sliced FETS bunch
using fast pulsed laser

3D plot of 9 time slices from ion beam
at laser interaction site
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Longitudinal emittance:

S. Gibson et al, “A novel longitudinal
laserwire to non-invasively measure 6D
bunch parameters at high current
hydrogen ion accelerators” IPAC18
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VEFFA



From S. Machida at FFA2020

Vertical excursion FFA (vFFA)

G& FFAG Electron Cyclotron THIRO OHKAWSA, Uni-

versity Of in by D. W. Kerst) —New- ‘types

. o of FFAG! accelerators havmg the same orbit length for all

« Invented in 1955 by Tihiro Ohkawa. oo e gt o i s

. Re-mvented In 201 3 by Stephen BrOOkS electric field until the radiation loss becomes serious, probably
+ Orbit moves vertically when the beams are Bull. APS 30, 20 (1955)
accelerated. by Tihiro Ohkawa

Path length is constant for all the momenta.
Momentum compaction factor is zero.

- It was called electron cyclotron - - B = By exp (my)
- Ultra-relativistic particles can be accelerated | Top view 77 Tiold index
continuously with fixed field magnets. y: vertical
e s el ‘ ' ' hFFA
: : Bf v
- As a proton driver for spallation source Bd =
- High rep rate e
- Small footprint . =
- Simple rectangular magnet - - N '
Side view = " g %‘i ‘
-0.4 \ 7 )/
- Science and
% Technology
Facilities Council N -0.6 : . . - ‘
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Important aspects:

* Coupled optics (difficult to model)

* Vertical orbit excursion (implications for the beam diagnostics)

* Candidate for ISIS-Il and technology demonstrator using FETS (FET-FFA)



Analytical Approaches to Beam Dynamics in VFFA

Motivations

@ Current models rely on full simulation of machines
@ Computationally intensive and time-consuming
@ Has to be done for individual lattices

@ Limited understanding of how input parameters affect output
parameters

Need to develop an analytic approach!

Max Topp-Mugglestone



Analytic approach — preliminary results

qu
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@ Test lattice: large
VFFA ring (a la
muon collider)

e Small curvature
e Long magnets
relative to fringe

@ Model tested via
numerical integration

of analytic equations
of motion

Agreement is currently poor! This shows the need for further work in
understanding the nature of the VFFA, and emphasises the need for
development of a bespoke model



Collimator Study Updates
understanding capture efficiency

* Focus on capturing Halo particles generated during beam injection scheme in FETS-
FFA.

“ Owing to transverse coupling between horizontal and vertical planes, a collimator
placed in one plane captures halo particles in both planes.

- Capture efficiency was computed by different fractional part of ring tune. In this
study, I-shape collimator is located in x plane.

In short time scale (within 5 turns), the capture efficiency has a strong trend in u
tune variation as the collimator is located on x plane in this study. Coupling angle
does not affect capture speed /strength.

* In long time scale, required turn number to capture all halo particles is also relating
to u tune. When the fractional part of ring tune in u space is fixed on the resonant
conditions, the amplitude of particles are limited in between islands. In this case, one
place collimator cannot capture particles which amplitude is smaller than the
collimator aperture.

From these studies, the capture efficiency can be optimised by turn control, that is
similar approach to design synchrotron collimator. However, in vFFA, advantage of
single I-shape collimator is that

halo particles are captured in x and y direction simultaneously

x sided I-shape collimator can collimate halo particles over the hole range of
beam energy by stretching its vertical size.

E. Yamakawa
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Beam Position Monitor

- High mechanical tolerances over the
large electrode & body surface areas
are needed to keep errors low over
the vertical aperture.

- Prototype BPM, half the width of
preliminary design, has been
manufactured to verify the design
simulations. This will be delivered at
Kyoto University FFA ring (KURNS) in
Japan for beam test this year.

- Preliminary design of FETS-FFA BPM
will be improved by the test results
of prototype BPM next year.

Emi Yamakawa Half-size prototype BPM, tested in the diagnostics lab.



Beam Profile Monitor

Vertical beam profile

- lonisation Profile Monitor (IPM) has been designed
as a non-destructive beam profile monitor.

Fundamental design study has been done in CST.

Further studies are necessary to verify reliability
of the monitor.

- Wire Profile Monitor (WPM) has been also
developed as a destructive beam profile monitor. Preliminary design of FETS-FFAIPM, modelled in CST

- Wire position is fixed in the ring, as the beam wiill

Beam

10um Simulation, 3 MeV

move across the wire in FFA. o j—
- Very thin wire ($10um) is required to be able to = |
measure a beam profile during acceleration. Sarf
Prototype WPM will be manufactured and %sf—
delivered to KURNS for beam test this year. €
SR
D |
O s+
=

i
10 20 30 40 50 60 70 80 90 100

Beam position [mm]

Emi Yamakawa Prototype FFA WPM with $p10um CNT wire



Beam Current Monitor

- Non-destructive Beam Current Monitor is
required to be developed to measure the
beam intensity in the ring.

- Design study of Wall Current Monitor (WCM)
has been started. Manufacture of a large
permeability Ferrite core could be
challenging.

- Preliminary simulation suggests very weak
measured signal strength due to size of beam
aperture.

- Prototype WCM is planed to be designed and
manufactured to verify design simulations in
a few years.

- DC Current Transformer (DCCT) is also required
to be developed to measure a DC component Cross Section View of FFA WCM
of the beam.

- Design study will start in a few years.

WCM Ferrite Core Shown in Red

Preliminary design of FETS-FFA WCM

Emi Yamakawa



Material tests using FETS beam

- Set of tests are planned in FETS beam line once it is
operational.

- Prototype WPM will be installed in front of the
FETS beam dump to test material properties
(Thermal damaﬁe and Radiation damage) and
performance when intercepting 3 MeV beam.

- Scintillation screen materials (YAG crystal, P46 and
guartz) are also tested to identify suitable
materials with reasonable lifetimes while
interacting with the beam.

. Beam Loss Monitors

Is it possible to measure a beam loss generated by
a low ener%y and low current beam outside the
beam pipe:

. A stainless steel block will be installed into the
path of the FETS beam to generate beam loss in a
controlled way and test an ISIS ionisation BLM to preliminary design of WCM
see if the loss can be measured. CETS bearn line

Emi Yamakawa



Testing Nonlinear Integrable Optics with IBEX



Jake Flowerdew

Nonlinear Integrable Optics

* Desirable to make an integrable lattice which is nonlinear.
» Supress instabilities without reducing the dynamic aperture.

Remove time dependence from the Hamiltonian, making it an integral of the
motion.

2 2
_ PN T PyN n xx + y%

Hy 5 5 + Ulxy, yn)-
t ‘ 8 , 16 _
U(x,y)= liﬁ—zhn[(::c+1y)2 e (x+iy)° + 75 (x+iy)° +J

* Complicated elliptical potential can be approximated as octupole
(Quasi Integrable Optics)



Nonlinear Integrable Optics

Octupole strength scales with 1/3
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Why study accelerator physics in a Paul trap?

* Cost effective when compared to building an accelerator.
* Dispersion- and chromaticity- free environment.
* Low energy ions — will not damage components when lost.

¢ Large parameter space:
e Can create various different lattice types.
e Can easily change the number of particles (intensity).

* Fast measurement times.

Jake Flowerdew
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Nonlinear upgrade to IBEX

h
II Still need good quadrupole field.
R, * Inscribed radius and width of
m  plates was optimised to
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Creating Exact Multipolar Fields with
Azimuthally Modulated RF Cavities

Laurence Wroe



Alm

e Currently:
Majority of accelerating cavities are azimuthally symmetric and operate in TM,,-exact mode. Solely

accelerate a beam — no transverse fields
Transverse-affecting cavities (e.g. crab cavities) that operate in operate in TM,,,-like modes have novel and

elaborate designs to:
* separate the frequencies of the 2-fold degenerate TM,,,-like mode

e damp instabilities caused by the lower order fundamental accelerating TM,,,,-like mode
* minimise unwanted multipolar components

* Initial question - can we design an RF cavity that simultaneously:

* Accelerates beam
» Also has an exact, user-specified transverse multipole components (e.g. quadrupole, sextupole ...)

* Operates in non-degenerate, fundamental mode

* Uses:
* Introduce desired multipolar components (e.g. for quadrupole focusing)
* Remove undesired multipolar components (e.g. remove dipole component introduced by RF power coupler)

Laurence Wroe
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How?

* User expresses desired ratio of accelerating component to multipolar component
(how much does cavity longitudinally accelerate compared to transversely focus?)

e Determine the azimuthally varying radius of a “pillbox-like” RF cavity that solves
the boundary conditions of EM field for desired field and multipolar components

* Example 3 GHz RF cavity shapes:
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Verification of results

* Theoretical analysis has been verified
through simulation by performing field
decompositions of cavities using CST

* Theoretical analysis to be verified through
experimentation:
* Workshop tasked with building cavity that

operates in the TM,, ,,,, mode. _
Quadrupole term 5x’greater than acceleration

* Will use bead pull experiment to
experimentally verify results

* Theory and simulation have been written
into paper. Will be submitted to journal once
experimental results taken and added in

Laurence Wroe
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summary

. foAI conducts essential research on intense hadron beams
y
* Improving understanding required to operate high
intensity machines, essential for ISIS operations
* Developing novel beam diagnostic tools

* Studying novel concepts and potentially revolutionary
accelerator systems for next generation applications,
etc.

. ]Ic’_c rl)grforms its mission to educates new scientists in the
ie

* Institute continues its essential international collaborations
with leading accelerator centres worldwide



