Lamb shift in muonic hydrogen

8 July 2010 | www.nature.com/nature | \$10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

naure

113 28 19:0

OIL SPILLS There's more to come PLAGIARISM

It's worse than you think CHIMPANZEES The battle for survival

> SHRINKING THE PROTON New value from exotic atom trims radius by four per cent

NATUREJOBS Researchers for hire

ETH

A. Antognini

MPQ, Garching, Germany ETH, Zurich, Switzerland

Collaboration

F. Kottmann

A. Antognini, T.W. Hänsch, T. Nebel, R. Pohl

D. Taqqu

E.-O. Le Bigot, F. Biraben, P. Indelicato, L. Julien, F. Nez

F.D. Amaro, J.M.R. Cardoso, D.S. Covita, L.M.P. Fernandes, J.A.M. Lopes, C.M.B. Monteiro, J.M.F. Dos Santos, J.F.C.A. Veloso

A. Giesen, K. Schuhmann

T. Graf

Y.-W. Liu

A. Dax, P.E. Knowles, L. Ludhova, F. Mulhasuer

ETH Zürich, Switzerland

MPQ, Garching, Germany

PSI, Switzerland

Laboratoire Kastler Brossel, Paris, France

Department of Physics, Coimbra, Portugal

Dausinger + Giesen, Stuttgart, Germany

Institut für Strahlwerkzeuge, Stuttgart, Germany

National Tsing Hua University, Hsinchu, Taiwan

former members

Spectroscopy Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)

Spectroscopy Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)

Bohr, Heisenberg, Schrödinger, Born, Pauli (1925) QM

SpectroscopyFraunhofer, Amstrong, Balmer, Rydberg (1800-1900)Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)QM

 H_{α} doublet, $\vec{S}_{e^{-}}$ Michelson (1891), Goudsmit, Dirac (1930) α , spin, antimatter

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)		
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM	
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	lpha, spin, antimatter	
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test	

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)		
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM	
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	α , spin, antimatter	
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test	
p-mag. moment	Stern (1933)	p has a structure	

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)	
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	α , spin, antimatter
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test
p-mag. moment	Stern (1933)	p has a structure
d-quad. moment	Rabi, Ramsey (1939)	Nucl. force, NMR, mol. beam

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)		
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM	
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	α , spin, antimatter	
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test	
p-mag. moment	Stern (1933)	p has a structure	
d-quad. moment	Rabi, Ramsey (1939)	Nucl. force, NMR, mol. beam	
H/He-masses	Aston, Eddington, Einstein, Bethe (1939)	Nucl. fusion / star dynamics	

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)		
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM	
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	α , spin, antimatter	
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test	
p-mag. moment	Stern (1933)	p has a structure	
d-quad. moment	Rabi, Ramsey (1939)	Nucl. force, NMR, mol. beam	
H/He-masses	Aston, Eddington, Einstein, Bethe (1939)	Nucl. fusion / star dynamics	
2S-2P, 1S-HFS	Lamb, Rabi, Nafe, Nelson, Bethe, Schwinger (1947)	QED	

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)		
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM	
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	α , spin, antimatter	
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test	
p-mag. moment	Stern (1933)	p has a structure	
d-quad. moment	Rabi, Ramsey (1939)	Nucl. force, NMR, mol. beam	
H/He-masses	Aston, Eddington, Einstein, Bethe (1939)	Nucl. fusion / star dynamics	
2S-2P, 1S-HFS	Lamb, Rabi, Nafe, Nelson, Bethe, Schwinger (1947)	QED	
21 cm Line	Purcell, Even (1951)	Radio astronomy	

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)		
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM	
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	α , spin, antimatter	
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test	
p-mag. moment	Stern (1933)	p has a structure	
d-quad. moment	Rabi, Ramsey (1939)	Nucl. force, NMR, mol. beam	
H/He-masses	Aston, Eddington, Einstein, Bethe (1939)	Nucl. fusion / star dynamics	
2S-2P, 1S-HFS	Lamb, Rabi, Nafe, Nelson, Bethe, Schwinger (1947)	QED	
21 cm Line	Purcell, Even (1951)	Radio astronomy	
H-maser	Ramsey, Kleppner (1960)	Atomic clock	

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)	
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	α , spin, antimatter
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test
p-mag. moment	Stern (1933)	p has a structure
d-quad. moment	Rabi, Ramsey (1939)	Nucl. force, NMR, mol. beam
H/He-masses	Aston, Eddington, Einstein, Bethe (1939)	Nucl. fusion / star dynamics
2S-2P, 1S-HFS	Lamb, Rabi, Nafe, Nelson, Bethe, Schwinger (1947)	QED
21 cm Line	Purcell, Even (1951)	Radio astronomy
H-maser	Ramsey, Kleppner (1960)	Atomic clock
1S-2S laser spec.	Hänsch (2000), Biraben	Frequency comb, laser cooling QED test, R_{∞} , const. variation

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg (1800-1900)	
	Bohr, Heisenberg, Schrödinger, Born, Pauli (1925)	QM
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (1930)	α , spin, antimatter
Deuteron	Urey (1932) / Schramm (1991)	Nucl. phys. / Big bang test
p-mag. moment	Stern (1933)	p has a structure
d-quad. moment	Rabi, Ramsey (1939)	Nucl. force, NMR, mol. beam
H/He-masses	Aston, Eddington, Einstein, Bethe (1939)	Nucl. fusion / star dynamics
2S-2P, 1S-HFS	Lamb, Rabi, Nafe, Nelson, Bethe, Schwinger (1947)	QED
21 cm Line	Purcell, Even (1951)	Radio astronomy
H-maser	Ramsey, Kleppner (1960)	Atomic clock
1S-2S laser spec.	Hänsch (2000), Biraben	Frequency comb, laser cooling QED test, R_{∞} , const. variation
Bose-Einst. cond.	Kleppner,Greytak, Wieman, Cornell	Laser cooling

ETH

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg	g (1800-1900)	
	Bohr, Heisenberg, Schrödinger, Born, F	Pauli (1925)	QM
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (19	30)	α , spin, antimatter
Deuteron	Urey (1932) / Schramm (1991)		Nucl. phys. / Big bang test
p-mag. moment	Stern (1933)		p has a structure
d-quad. moment	Rabi, Ramsey (1939)		Nucl. force, NMR, mol. beam
H/He-masses	Aston, Eddington, Einstein, Bethe (193	9)	Nucl. fusion / star dynamics
2S-2P, 1S-HFS	Lamb, Rabi, Nafe, Nelson, Bethe, Schv	vinger (1947)	QED
21 cm Line	Purcell, Even (1951)		Radio astronomy
H-maser	Ramsey, Kleppner (1960)		Atomic clock
1S-2S laser spec.	Hänsch (2000), Biraben		Frequency comb, laser cooling QED test, R_{∞} , const. variation
Bose-Einst. cond.	Kleppner, Greytak, Wieman, Cornell		Laser cooling
$\bar{H}, \bar{p}He, e^+e^-, \mu^+e^-$, <i>π</i> ρ	CPT, QED test	, const., scattering lengths

Spectroscopy	Fraunhofer, Amstrong, Balmer, Rydberg	g (1800-1900)		
	Bohr, Heisenberg, Schrödinger, Born, F	Pauli (1925)	QM	
H_{lpha} doublet, $ec{S}_{e^{-}}$	Michelson (1891), Goudsmit, Dirac (19	30)	lpha, spin,	antimatter
Deuteron	Urey (1932) / Schramm (1991)		Nucl. ph	ys. / Big bang test
p-mag. moment	Stern (1933)		p has a s	structure
d-quad. moment	Rabi, Ramsey (1939)		Nucl. for	ce, NMR, mol. beam
H/He-masses	Aston, Eddington, Einstein, Bethe (193	9)	Nucl. fus	tion / star dynamics
2S-2P, 1S-HFS	Lamb, Rabi, Nafe, Nelson, Bethe, Schw	vinger (1947)	QED	
21 cm Line	Purcell, Even (1951)		Radio as	stronomy
H-maser	Ramsey, Kleppner (1960)		Atomic c	lock
1S-2S laser spec.	Hänsch (2000), Biraben		Frequence QED tes	cy comb, laser cooling t, R_∞ , const. variation
Bose-Einst. cond.	Kleppner,Greytak, Wieman, Cornell		Laser co	oling
$ar{\mathrm{H}}$, $ar{p}$ He, e^+e^- , μ^+e^- ,	<i>π</i> p	CPT, QED test	, const., so	cattering lengths
p and d radii	Lamb shift in μ p, μ d	QED test, R_{∞}	, lattice QC 5σ devia	CD/few-nucleon th. tion, New effects?
ETH		A. Antogn	ini, CERN	10.08.2010 – p.3

 $E = \frac{R_{\infty}}{n^2}$ $V \sim 1/r$

ETH

ETH

ETH

ETH

ETH

ETH

The leading proton finite size contribution

Maxwell equation: $\nabla E = 4\pi\rho$

$$V = \begin{cases} -\frac{Z\alpha}{2r_{\rm p}} \left(3 - \left(\frac{r}{r_{\rm p}}\right)^2\right) & (r < r_{\rm p}) \\ -\frac{Z\alpha}{r} & (r > r_{\rm p}) \end{cases}$$

$$\Delta V = \begin{cases} -\frac{Ze^2}{2r_{\rm p}} \left(3 - \left(\frac{r}{r_{\rm p}}\right)^2 - \frac{2r_{\rm p}}{r}\right) \\ 0 \end{cases}$$
$$\Delta E^{FS} = \langle \bar{\Psi} | \Delta V | \Psi \rangle$$

ETH

The leading proton finite size contribution

Maxwell equation: $\nabla E = 4\pi\rho$

$$V = \begin{cases} -\frac{Z\alpha}{2r_{\rm p}} \left(3 - \left(\frac{r}{r_{\rm p}}\right)^2\right) & (r < r_{\rm p}) \\ -\frac{Z\alpha}{r} & (r > r_{\rm p}) \end{cases}$$

$$\Delta V = \begin{cases} -\frac{Ze^2}{2r_{\rm p}} \left(3 - \left(\frac{r}{r_{\rm p}}\right)^2 - \frac{2r_{\rm p}}{r}\right) \\ 0 \end{cases}$$
$$\Delta E^{FS} = \langle \bar{\Psi} | \Delta V | \Psi \rangle$$

• Electron-proton scattering (1963, ... 2010)

 $ightarrow r_{
m p}$ with $u_r=1\%$

- Hydrogen spectroscopy (1989, ...)
 - very precise measurements: $d\nu/\nu = 1 \times 10^{-14}$ (1S-2S)
 - interpretation of the measurements need $r_{\rm p}$
 - conversely assuming correctness of bound-state QED $ightarrow r_{
 m p}$
 - however finite size effect small ($u_r \sim 10^{-10}$) $\rightarrow r_p$ with $u_r = 1\%$

- Hydrogen spectroscopy (1989, ...)
 - very precise measurements: $d\nu/\nu = 1 \times 10^{-14}$ (1S-2S)
 - interpretation of the measurements need $r_{
 m p}$
 - conversely assuming correctness of bound-state QED $ightarrow r_{
 m p}$
 - however finite size effect small ($u_r \sim 10^{-10}$) $\rightarrow r_p$ with $u_r = 1\%$
- Muonic hydrogen spectroscopy (2009 ...)

 $m_{\mu}/m_e \approx 200 \rightarrow \mu^-$ "orbit" is 200 times smaller than e⁻ "orbit" \rightarrow large finite size effect $\rightarrow r_p$ with $u_r = 0.1\%$

$$\frac{|\Psi_{\mu}(0)|^2}{|\Psi_e(0)|^2} = \left(\frac{m_{\mu}}{m_e}\right)^3 \approx 10^7$$

- Hydrogen spectroscopy (1989, ...)
 - very precise measurements: $d\nu/\nu = 1 \times 10^{-14}$ (1S-2S)
 - interpretation of the measurements need $r_{\rm p}$
 - conversely assuming correctness of bound-state QED $ightarrow r_{
 m p}$
 - however finite size effect small ($u_r \sim 10^{-10}$) $\rightarrow r_p$ with $u_r = 1\%$
- Muonic hydrogen spectroscopy (2009 ...)

 $m_{\mu}/m_e \approx 200 \rightarrow \mu^-$ "orbit" is 200 times smaller than e⁻ "orbit" \rightarrow large finite size effect $\rightarrow r_p$ with $u_r = 0.1\%$

Muonic hydrogen

Aim of the experiment

• Measure the 2S - 2P energy difference (Lamb shift) in μ p $\Delta E(2S - 2P) = 209.978(5) - 5.226 r_p^2 + 0.0347 r_p^3$ meV with 30 ppm precision.

- Extract r_p with $u_r \approx 10^{-3}$ (rel. accuracy)
 - → bound-state QED test in hydrogen to a level of $u_r \approx 3 \times 10^{-7}$ (10× better)
 - \rightarrow improve Rydberg constant ($R_{\infty} = mc\alpha^2/2h$) to a level of $u_r \approx 1 \times 10^{-12}$ (6× better)
 - \rightarrow benchmark for lattice QCD calculations
 - \rightarrow confront with electron scattering results

Principle of the experiment

- μ^- are produced with the PSI accelerator (p $\rightarrow \pi^- \rightarrow \mu^-$)
- μ^- stop in a 1 mbar hydrogen target whereby muonic hydrogen is formed
- \bullet Before stopping, the μ^- trigger the laser system
- \bullet The laser pulse excites the 2S-2P transition
- 2 keV X-ray are detected as a signature of the laser-induced transition

 μp formation

1%: long-lived $\mu p(2S)$ with 1 μ s lifetime (@ 1 mbar)

Laser at $\lambda \approx 6 \,\mu$ m Signature: 2 keV X-ray A. Antognini, CERN 10.08.2010 – p.8

 μ p spectroscopy

Principle of the experiment

Principle of the experiment

- Low energy muon beam line at PSI
- Laser system
- Detectors and DAQ

The experimental hall at PSI

5 keV energy muon beam line

- \bullet Production of 20-50 keV μ^-
 - $10^8 \ \pi^-$ injected in CT
 - π^- decay in MeV μ^-
 - μ^- decel. to 20-50 keV by crossing the foil
- Extraction of μ^{-} from CT $\frac{T_{\parallel}(0)}{T_{\perp}(0)} < \left(\frac{B_{\max}}{B_{0}} - 1\right) - \frac{qV}{T_{\perp}(0)}$
- Momentum selection
 - toroidal magnetic field
 → vertical drift
 - eliminate $e^- \mbox{ and } n \mbox{ bg}$
- μ^- detection
- μp formation and laser exp. A. Antognini, CERN 10.08.2010 – p.12
Inside the 5 Tesla solenoid

5 keV μ^- , 400 s⁻¹ with stop vol. in 1 hPa H₂ gas of $5 \times 15 \times 190$ mm³

- Stacks of C foils are used as non-destructive muon detector
 - μ^- loses few keV energy per foil
 - secondary electrons are emitted
 - ExB velocity dependent drift
- Laser is triggered by the electrons signals from the C stacks (coincidence with TOF)
- $\bullet~\mu^-$ enter in 1 hPa hydrogen wherby μp is formed

10.08.2010 - p.13

A. Antognini, CERN

Animation of the experiment

(T.W. Hänsch)

The laser system

Impressions from the laser hut

Disk laser oscillators

Disk amplifier laser heads

Disk laser doubling stages

Measurements

A. Antognini, CERN 10.08.2010 – p.21

Laser frequency known with 300 MHz uncertainty

Systematics: 300 MHz Statistics: 700 MHz

A. Antognini, CERN 10.08.2010 – p.21

ETH

... and the time spectrum

Time-spectrum fit around laser time \Rightarrow Extract precise bgr. value

Proton radius from μp **Lamb shift**

• Measurement (no theory input needed):

$$\nu(2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}) = 49881.88(76) \text{ GHz}$$

Proton radius from μp **Lamb shift**

• Measurement (no theory input needed):

$$\nu(2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}) = 49881.88(76) \text{ GHz}$$

• Interpretation of the measurement needs theory (to extract the proton radius)

$$\begin{split} L^{\text{exp.}} &= 206.2949(32) \text{ meV} \\ L^{\text{th.}} &= 209.9779(49) - 5.2262 \, r_{\text{p}}^2 + 0.0347 \, r_{\text{p}}^3 \text{ meV} \end{split} \right\} \Rightarrow \boxed{r_{\text{p}} = 0.84184(36)^{\text{exp}}(56)^{\text{th}} \text{ fm}} \\ & u_r^{\text{exp}} = 4.3 \times 10^{-4} \\ & u_r^{\text{th}} = 6.7 \times 10^{-4} \end{split}$$

$$r_{\rm p} = 0.84184(67) \; {\rm fm} \qquad u_r^{\rm th} = 8 \times 10^{-4}$$

Pohl et al., Nature **466**, issue 7303, 213-216 (2010)

Proton radius from μp **Lamb shift**

• Measurement (no theory input needed):

$$u(2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}) = 49881.88(76) \text{ GHz}$$

• Interpretation of the measurement needs theory (to extract the proton radius)

$$\begin{split} L^{\text{exp.}} &= 206.2949(32) \text{ meV} \\ L^{\text{th.}} &= 209.9779(49) - 5.2262 \, r_{\text{p}}^2 + 0.0347 \, r_{\text{p}}^3 \text{ meV} \end{split} \right\} \Rightarrow \boxed{r_{\text{p}} = 0.84184(36)^{\text{exp}}(56)^{\text{th}} \text{ fm}} \\ & u_r^{\text{exp}} = 4.3 \times 10^{-4} \\ & u_r^{\text{th}} = 6.7 \times 10^{-4} \end{split}$$

$$r_{\rm p} = 0.84184(67) \; {\rm fm} \qquad u_r^{\rm th} = 8 \times 10^{-4}$$

Pohl et al., Nature 466, issue 7303, 213-216 (2010)

CODATA 2006: $r_{\rm p} = (0.8768 \pm 0.0069)$ fm, from H e-p scattering: $r_{\rm p} = (0.895 \pm 0.018)$ fm (2%)

 3.0σ from e-p scatt. 5.0σ from CODATA $r_{\rm p}$ 4% smaller

What may be wrong?

What may be wrong?

μ p experiment wrong?

- Frequency mistake by 75 GHz $\Leftrightarrow u_r = 0.15\%$? (Linewidth =20 GHz) (in spectroscopy people measure frequency with $u_r \sim 10^{-14}$ and Hz precison)
- Two consistent ways to calibrate the frequency of the laser:
 - 1) at 6 μm with H_2O lines (20 measurements of 5 different lines)
 - 2) at 708 nm with lambdameter, wavemeter and FP calibated to I_2 , Rb, Cs lines:

 $\nu^{6\mu m} = \nu^{708nm} - 3 \cdot \hbar \omega_{\rm vib}$

- Zeeman + AC/DC Stark + pressure shift $\cdots < 50 \text{ MHz} (\sim 1/m)$

What may be wrong?

μp theory wrong?

Discrepancy=0.31 meV Th. uncertainty=0.005 meV $\implies 60\delta$ (theory) deviation

#	Contribution	Value	Unc.
3	Relativistic one loop VP	205.0282	
4	NR two-loop electron VP	1.5081	
5	Polarization insertion in two Coulomb lines	0.1509	
6	NR three-loop electron VP	0.00529	
7	Polarisation insertion in two and three Coulomb lines (corrected)	0.00223	
8	Three-loop VP (total, uncorrected)		
9	Wichmann-Kroll	-0.00103	
10	Light by light electron loop ((Virtual Delbrück)	0.00135	0.00135
11	Radiative photon and electron polarization in the Coulomb line $lpha^2(Zlpha)^4$	-0.00500	0.0010
12	Electron loop in the radiative photon of order $lpha^2(Zlpha)^4$	-0.00150	
13	Mixed electron and muon loops	0.00007	
14	Hadronic polarization $lpha(Zlpha)^4m_r$	0.01077	0.00038
15	Hadronic polarization $\alpha (Z\alpha)^5 m_r$	0.000047	
16	Hadronic polarization in the radiative photon $lpha^2 (Zlpha)^4 m_r$	-0.000015	
17	Recoil contribution	0.05750	
18	Recoil finite size	0.01300	0.001
19	Recoil correction to VP	-0.00410	
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	-0.66770	
21	Muon Lamb shift 4th order	-0.00169	
22	Recoil corrections of order $\alpha (Z\alpha)^5 \frac{m}{M} m_r$	-0.04497	
23	Recoil of order α^6	0.00030	
24	Radiative recoil corrections of order $\alpha(Z\alpha)^n \frac{m}{M}m_r$	-0.00960	
25	Nuclear structure correction of order $(Z\alpha)^5$ (Proton polarizability)	0.015	0.004
26	Polarization operator induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	0.00019	
27	Radiative photon induced correction to nuclear polarizability $lpha(Zlpha)^5m_r$	-0.00001	
	Sum	206.0573	0.0045

#	Contribution	Value	Unc.
3	Relativistic one loop VP	205.0282	
4	NR two-loop electron VP	1.5081	
5	Polarization insertion in two Coulomb lines	0.1509	
6	NR three-loop electron VP	0.00529	
7	Polarisation insertion in two and three Coulomb lines (corrected)	0.00223	
8	Three-loop VP (total, uncorrected)		
9	Wichmann-Kroll	-0.00103	
10	Light by light electron loop ((Virtual Delbrück)	0.00135	0.00135
11	Radiative photon and electron polarization in the Coulomb line $lpha^2(Zlpha)^4$	-0.00500	0.0010
12	Electron loop in the radiative photon of order $lpha^2(Zlpha)^4$	-0.00150	
13	Mixed electron and muon loops	0.00007	
14	Hadronic polarization $lpha(Zlpha)^4m_r$	0.01077	0.00038
15	Hadronic polarization $\alpha (Z\alpha)^5 m_r$	0.000047	
16	Hadronic polarization in the radiative photon $lpha^2 (Zlpha)^4 m_r$	-0.000015	
17	Recoil contribution	0.05750	
18	Recoil finite size	0.01300	0.001
19	Recoil correction to VP	-0.00410	
20	Radiative corrections of order $lpha^n (Zlpha)^k m_r$	-0.66770	
21	Muon Lamb shift 4th order	-0.00169	
22	Recoil corrections of order $\alpha (Z\alpha)^5 \frac{m}{M} m_r$	-0.04497	
23	Recoil of order α^6	0.00030	
24	Radiative recoil corrections of order $\alpha(Z\alpha)^n \frac{m}{M}m_r$	-0.00960	
25	Nuclear structure correction of order $(Z\alpha)^5$ (Proton polarizability)	0.015	0.004
26	Polarization operator induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	0.00019	
27	Radiative photon induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	-0.00001	
	Sum	206.0573	0.0045

A. Antognini, CERN 10.08.2010 – p.26

 e^{-} e^{+}

#	Contribution	Value	Unc.	
3	Relativistic one loop VP	205.0282		
4	NR two-loop electron VP	1.5081		
5	Polarization insertion in two Coulomb lines	0.1509		<u>}</u>
6	NR three-loop electron VP	0.00529		
7	Polarisation insertion in two and three Coulomb lines (corrected)	0.00223		
8	Three-loop VP (total, uncorrected)			
9	Wichmann-Kroll	-0.00103		φ
10	Light by light electron loop ((Virtual Delbrück)	0.00135	0.00135	<u></u> <u></u>
11	Radiative photon and electron polarization in the Coulomb line $lpha^2(Zlpha)^4$	-0.00500	0.0010	
12	Electron loop in the radiative photon of order $\alpha^2 (Z\alpha)^4$	-0.00150		333
13	Mixed electron and muon loops	0.00007		
14	Hadronic polarization $\alpha (Z\alpha)^4 m_r$	0.01077	0.00038	
15	Hadronic polarization $\alpha (Z\alpha)^5 m_r$	0.000047		
16	Hadronic polarization in the radiative photon $lpha^2 (Zlpha)^4 m_r$	-0.000015		~~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17	Recoil contribution	0.05750		$\overline{\langle \cdot \rangle}$
18	Recoil finite size	0.01300	0.001	μ ⁺ γ μ ⁺ γ
19	Recoil correction to VP	-0.00410		<u> </u>
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	-0.66770		
21	Muon Lamb shift 4th order	-0.00169		$\mu^+ \overleftarrow{\mu^-} e^+ \overleftarrow{e^-}$
22	Recoil corrections of order $\alpha (Z\alpha)^5 \frac{m}{M} m_r$	-0.04497		$e^+ \bigcirc e^-$
23	Recoil of order α^6	0.00030		<u> </u>
24	Radiative recoil corrections of order $\alpha (Z\alpha)^n \frac{m}{M} m_r$	-0.00960		
25	Nuclear structure correction of order $(Z\alpha)^5$ (Proton polarizability)	0.015	0.004	ىمى
26	Polarization operator induced correction to nuclear polarizability $lpha (Zlpha)^5 m_r$	0.00019		$\frac{2}{2}$
27	Radiative photon induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	-0.00001		e +
	Sum	206.0573	0.0045	<u> </u>

#	Contribution	Value	Unc.	
3	Relativistic one loop VP	205.0282		
4	NR two-loop electron VP	1.5081		
5	Polarization insertion in two Coulomb lines	0.1509		
6	NR three-loop electron VP	0.00529		
7	Polarisation insertion in two and three Coulomb lines (corrected)	0.00223		
8	Three-loop VP (total, uncorrected)			
9	Wichmann-Kroll	-0.00103		
10	Light by light electron loop ((Virtual Delbrück)	0.00135	0.00135	
11	Radiative photon and electron polarization in the Coulomb line $lpha^2(Zlpha)^4$	-0.00500	0.0010	
12	Electron loop in the radiative photon of order $lpha^2(Zlpha)^4$	-0.00150		
13	Mixed electron and muon loops	0.00007		Hadron
14	Hadronic polarization $lpha(Zlpha)^4m_r$	0.01077	0.00038	
15	Hadronic polarization $lpha(Zlpha)^5 m_r$	0.000047		
16	Hadronic polarization in the radiative photon $lpha^2 (Zlpha)^4 m_r$	-0.000015		
17	Recoil contribution	0.05750		
18	Recoil finite size	0.01300	0.001	
19	Recoil correction to VP	-0.00410		
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	-0.66770		
21	Muon Lamb shift 4th order	-0.00169		
22	Recoil corrections of order $lpha(Zlpha)^5 rac{m}{M} m_r$	-0.04497		
23	Recoil of order α^6	0.00030		
24	Radiative recoil corrections of order $lpha(Zlpha)^n rac{m}{M} m_r$	-0.00960		
25	Nuclear structure correction of order $(Z\alpha)^5$ (Proton polarizability)	0.015	0.004	
26	Polarization operator induced correction to nuclear polarizability $lpha(Zlpha)^5m_r$	0.00019		
27	Radiative photon induced correction to nuclear polarizability $\alpha(Z\alpha)^5 m_r$	-0.00001		
	Sum	206.0573	0.0045	

#	Contribution	Value	Unc.
3	Relativistic one loop VP	205.0282	
4	NR two-loop electron VP	1.5081	
5	Polarization insertion in two Coulomb lines	0.1509	
6	NR three-loop electron VP	0.00529	
7	Polarisation insertion in two and three Coulomb lines (corrected)	0.00223	
8	Three-loop VP (total, uncorrected)		
9	Wichmann-Kroll	-0.00103	
10	Light by light electron loop ((Virtual Delbrück)	0.00135	0.00135
11	Radiative photon and electron polarization in the Coulomb line $lpha^2(Zlpha)^4$	-0.00500	0.0010
12	Electron loop in the radiative photon of order $lpha^2(Zlpha)^4$	-0.00150	
13	Mixed electron and muon loops	0.00007	
14	Hadronic polarization $lpha(Zlpha)^4m_r$	0.01077	0.00038
15	Hadronic polarization $\alpha (Z\alpha)^5 m_r$	0.000047	
16	Hadronic polarization in the radiative photon $lpha^2 (Zlpha)^4 m_r$	-0.000015	
17	Recoil contribution	0.05750	
18	Recoil finite size	0.01300	0.001
19	Recoil correction to VP	-0.00410	
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	-0.66770	
21	Muon Lamb shift 4th order	-0.00169	
22	Recoil corrections of order $lpha(Zlpha)^5 rac{m}{M} m_r$	-0.04497	
23	Recoil of order α^6	0.00030	
24	Radiative recoil corrections of order $\alpha(Z\alpha)^n \frac{m}{M}m_r$	-0.00960	
25	Nuclear structure correction of order $(Z\alpha)^5$ (Proton polarizability)	0.015	0.004
26	Polarization operator induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	0.00019	
27	Radiative photon induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	-0.00001	
	Sum	206.0573	0.0045

#	Contribution	Value	Unc.	
3	Relativistic one loop VP	205.0282		
4	NR two-loop electron VP	1.5081		
5	Polarization insertion in two Coulomb lines	0.1509		
6	NR three-loop electron VP	0.00529		
7	Polarisation insertion in two and three Coulomb lines (corrected)	0.00223		
8	Three-loop VP (total, uncorrected)			
9	Wichmann-Kroll	-0.00103		
10	Light by light electron loop ((Virtual Delbrück)	0.00135	0.00135	
11	Radiative photon and electron polarization in the Coulomb line $lpha^2(Zlpha)^4$	-0.00500	0.0010	
12	Electron loop in the radiative photon of order $lpha^2 (Zlpha)^4$	-0.00150		
13	Mixed electron and muon loops	0.00007		
14	Hadronic polarization $lpha(Zlpha)^4m_r$	0.01077	0.00038	
15	Hadronic polarization $\alpha (Z\alpha)^5 m_r$	0.000047		
16	Hadronic polarization in the radiative photon $lpha^2 (Zlpha)^4 m_r$	-0.000015		
17	Recoil contribution	0.05750		
18	Recoil finite size	0.01300	0.001	
19	Recoil correction to VP	-0.00410		
20	Radiative corrections of order $lpha^n (Zlpha)^k m_r$	-0.66770		
21	Muon Lamb shift 4th order	-0.00169		
22	Recoil corrections of order $\alpha (Z\alpha)^5 \frac{m}{M} m_r$	-0.04497		
23	Recoil of order α^6	0.00030	22	-
24	Radiative recoil corrections of order $\alpha(Z\alpha)^n \frac{m}{M} m_r$	-0.00960	55	
25	Nuclear structure correction of order $(Z\alpha)^5$ (Proton polarizability)	0.015	0.004	
26	Polarization operator induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	0.00019		
27	Radiative photon induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	-0.00001		
	Sum	$2\overline{06.0573}$	0.0045	

Lamb shift prediction

radius dependent contributions

Contribution Value		
Leading nuclear size contribution	-5.19745	$< r_{\rm p}^2 >$
Radiative corrections to nuclear finite size effect	-0.0275	$< r_{\rm p}^2 >$
Nuclear size correction of order $(Z\alpha)^6 < r_{ m p}^2 >$	-0.001243	$< r_{\rm p}^2 >$
Total $< r_{\rm p}^2 >$ contribution	-5.22619	$< r_{\rm p}^2 >$
Nuclear size correction of order $(Z\alpha)^5$	0.0347	$< r_{\rm p}^{3} >$
Nuclear size correction of order $(Z\alpha)^6 < r_{\rm p}^4 >$	-0.000043	$< r_{\rm p}^2 >^2$

• A1 collaboration at MAMI, Mainz has started the reevaluation of the various proton moments: $< r_{\rm p}^2 >$, $R_{\rm Zemach}$, $< r_{\rm p}^4 > \dots$

New evaluations of structure leads to a shift < 10% of the measured discrepancy.

 $E(2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}) = 209.9779(49) - 5.2262 r_{\rm p}^2 + 0.0347 r_{\rm p}^3 \,\mathrm{meV}$ (HFS+FS included)

 μp theory wrong?

Discrepancy=0.31 meV Th. uncertainty=0.005 meV $\implies 60\delta$ (theory) deviation

Main contributions to the μp Lamb shift

H experiments wrong?

H theory wrong?

Are H experiments wrong?

$$L_{1S}^{\rm th}(r_{\rm p}^{\mu p}) - L_{1S}^{\rm exp} = 96(19)(4)(2) \text{ kHz}$$
$$\delta L^{\rm exp} \quad \delta L^{\rm QED} \quad \delta L^{r_{\rm p}} \qquad \delta L^{\rm exp} = \delta L^{R_{\infty}}$$

 L_{1S}^{exp} extracted from 1S - 2S and 2S - 8/12S transition

- 1S 2S has to be corrected by thousands of σ to explain the discrepancy
- 2S 8/12S has to be corrected by 5σ to explain the discrepancy $d\nu/\nu = 1 \times 10^{-11} \sim 1/100 \ \Gamma$ (systematics $\sim n^3$)

Free and bound-state QED

• Free QED

 $g-2 \rightarrow$ electron anomaly: test of QED, determination of α , NP

$$a_e = C_2 \left(\frac{\alpha}{\pi}\right) + C_4 \left(\frac{\alpha}{\pi}\right)^2 + C_6 \left(\frac{\alpha}{\pi}\right)^3 + C_8 \left(\frac{\alpha}{\pi}\right)^4 + C_{10} \left(\frac{\alpha}{\pi}\right)^5 + \Delta(\text{had., NP})$$

• Bound-state QED in Hydrogen

- Binding effects ($Z\alpha$) bad convergence, all-order approach/expansion
- Radiative corrections (α and $Z\alpha$)
- Recoil corrections (m/M and $Z\alpha$) relativity \Leftrightarrow two-body system
- Radiative-recoil corrections (α , m/M and $Z\alpha$)
- Proton structure corrections ($r_{\rm p}$, $r_{\rm Zemach}$ and $Z\alpha$)

Critical contributions in hydrogen

 $\Delta E_{SE}^{(2)} = m \left(\frac{\alpha}{\pi}\right)^2 \frac{(Z\alpha)^4}{n^3} G_n(Z\alpha) \qquad B_{60} = -86(15), \ G_{60}^{h.o.} = -101(15) \text{ Yerokin (2009)}$ $G_n = B_{40} + (Z\alpha)B_{50} + (Z\alpha)^2 \left[B_{63}\ln^3(Z\alpha)^{-2} + B_{62}\ln^2(Z\alpha)^{-2} + B_{61}\ln(Z\alpha)^{-2} + G_{h.o}\right] + \cdots$ $G_n = 1.409 - 0.177 + \left[-0.015 - 0.003 + 0.026 - 0.003 + \cdots\right] + \cdots$

Bad convergence of the $(Z\alpha)$ expansion

Is the theory in hydrogen wrong?

- The critical terms are coming from two-loop contributions
- The difference between all-order and expansion approaches shifts the L_{1S} by 7 kHz
- Higher order remainder for the two-loop self-energy $G^{h.o}(Z = 1) < 15 \text{ kHz}$

Is the theory in hydrogen wrong?

- The critical terms are coming from two-loop contributions
- The difference between all-order and expansion approaches shifts the L_{1S} by 7 kHz
- Higher order remainder for the two-loop self-energy $G^{h.o}(Z = 1) < 15 \text{ kHz}$

• Compare these th. uncertainties with: $L_{1S}^{exp} - L_{1S}^{th}(r_p^{\mu p})$ =96 kHz

The theory should be corrected by $25 \times \delta(\text{theory})$ to bring the value of $r_{\rm p}$ extracted from H-spectroscopy in agreement with our value

The origin of the discrepancy?

- QED th. in μ p: 60 δ (theory)
- QED th. in H: 25 δ (theory)
- R_{∞} : 5 σ
- QED term(s) missing?

- Consistent use of $r_{\rm p}$ definition?
- Something fundametally wrong with bound-state QED? In muonic sector?
- New effects or new physics? In muonic sector? In proton sector?

A. Antognini, CERN 10.08.2010 – p.37

- Bernauer et al. arXiv:1007.5076v2 (2010)

- Mohr at al., Rev. Mod. Phys. 80 633 (2008)

- Wang et al., Phys. Rev. D 79 094001 (2009)

- Sick, Phys. Lett. B 576 62 (2003)

- Belushkin et al., Phys. Rev. C 75 035202 (2007)

• Pressure shift?

- pressure shift of H(1S-2S) transition in H $_2$ gas ~ 10 MHz/mbar
- μp is m_e/m_μ smaller (stronger E-fields). less disturbed by external fields
 - smaller state mixing

MC simulations give a pressure shift of 1 MHz for 1 mbar

• Molecular formations leading to line shift?

 $\mu p(2S) + H_2 \rightarrow \{ [(pp\mu)^+]^* pee \}^* \rightarrow \mu p(1S) + \dots$

- If a molecule is formed there is immediate Auger emission followed by

a deexcitation to the ground state.

Fitted linewidth corresponds to theoretically expected, and discrepancy= 5Γ

- Pressure shift? Shift of 1 MHz.
- Molecular formations leading to line shift? No because of fast $2S \rightarrow 1S$ deexcitation.

- Pressure shift? Shift of 1 MHz.
- Molecular formations leading to line shift? No because of fast $2S \rightarrow 1S$ deexcitation.
- Weak interaction? Shift of ≈ 100 kHz.

- Pressure shift? Shift of 1 MHz.
- Molecular formations leading to line shift? No because of fast $2S \rightarrow 1S$ deexcitation.
- Weak interaction? Shift of ≈ 100 kHz.
- Proton charge distribution?
 - Dipole and Gauss models of proton shift the energy by < 500 MHz.
 - Fast convergence of the expansion:-5.19745< $r_{\rm p}^2$ >, -0.000043< $r_{\rm p}^2$ >².

- Pressure shift? Shift of 1 MHz.
- Molecular formations leading to line shift? No because of fast $2S \rightarrow 1S$ deexcitation.
- Weak interaction? Shift of ≈ 100 kHz.
- Proton charge distribution?
 - Dipole and Gauss models of proton shift the energy by < 500 MHz.
 - Fast convergence of the expansion:-5.19745< $r_{\rm p}^2$ >, -0.000043< $r_{\rm p}^2$ >².
- A muon edm? If $d_{\mu} = 2 \times 10^{-19}$ e·cm would shifts the energy level < 200 MHz
- Charge equality between e^- and μ^- generation? Checked to $u_r = 10^{-8}$ (from $\mu^+ e^-$)

- Pressure shift? Shift of 1 MHz.
- Molecular formations leading to line shift? No because of fast $2S \rightarrow 1S$ deexcitation.
- Weak interaction? Shift of ≈ 100 kHz.
- Proton charge distribution?
 - Dipole and Gauss models of proton shift the energy by < 500 MHz.
 - Fast convergence of the expansion:-5.19745< $r_{\rm p}^2$ >, -0.000043< $r_{\rm p}^2$ >².
- A muon edm? If $d_{\mu} = 2 \times 10^{-19}$ e·cm would shifts the energy level < 200 MHz
- Charge equality between e^- and μ^- generation? Checked to $u_r = 10^{-8}$ (from $\mu^+ e^-$)
- Dark photons? Vector Bosons with few MeV mass? [Maxim Pospelov]... From simple atoms there are constraints on light bosons with ultraweak coupling Mass from 1 eV to 1 keV: $\alpha_{spin-ind} = 10^{-13}$, $\alpha_{spin-dep} = 10^{-17}$ [PRL 104,220406 (2010)]

Other measurements

 $\mu p (2S_{1/2}(F=0) \rightarrow 2P_{3/2}(F=1)) at \lambda = 5.5 \mu m$

 $\mu d (2S_{1/2}(F=3/2) \rightarrow 2P_{3/2}(F=5/2))$

• $\sigma_{\text{position}} = 880 \text{ MHz} \iff 17 \text{ ppm}$ ($\Gamma = 19 \text{ GHz}$)

• Position does not fit with prediction: 3.5σ deviation

Extract $r_{\rm d}$ and d. pol.

 $\mu d (2S_{1/2}(F=1/2) \rightarrow 2P_{3/2}(F=3/2 \text{ and } 1/2))$

• $\sigma_{\text{position}} = 2.2 \text{ GHz} \iff 43 \text{ ppm}$ ($\Gamma = 19 \text{ GHz}$)

- \bullet Relative pos. fit to each others but not with the first μd line
- Background well know from previous μd line

The role of nuclear physics in atomic physics

Atomic physics means high-precison measurements. However their interpertations are usually limited by nuclear-physics effects

Interpertation of H, D, 3,4 He⁺, μ p, μ d, $\mu^{3,4}$ He⁺:

Bound-stated QED is important and interesting:

- Bindings effects and two-body problem (no exact solution)
- QED is essential to extract nucl. parameters from atomic meas. (or bound systems)

Isotope shift, $r_{\rm d}$ and deuteron pol.

A. Antognini, CERN 10.08.2010 – p.46

Summary & outlook

 \bullet We have measured 5 transitions in μp and μd with 20 ppm accuracy

- When (and if) discrepancy is solved:
 - $r_{\rm p}$, $r_{\rm d}$ determination (10× better)
 - $r_{\rm Zemach}$ determination
 - Deuteron polarizability
 - R_{∞} determination (6× better)
 - QED test in hydrogen/deuterium and muonic hydrogen/deuterium
- New experiment: μHe^+
 - May illuminate discrepancy, enhance sensitivity to QED effects, few-nucleon th.

Test of proton and deuteron models: lattice QCD, few-nucleon ab initio th.

Best test of H energy levels Fundamental constants

ETH

A. Antognini, CERN 10.08.2010 – p.47

Like a Hollywood movie:

Everything goes bad till five minutes before THE END!

The Paul Scherrer Institute

Nothing can hide in hydrogen

The spectrum of hydrogen atom has proved to be the "Rosetta stone" of modern physics.

T.W. Hänsch