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How the idea of RAPID NONLINEAR QGP fireball formation was developing

0.phenomenology of centrality dependence:
multiplcity/wounded nucleons indicate
an unexpected jump between light and heavy ions

1.The holography and use of the idea of trapped surface
(from Gubser et al, 2008)

2. Finding trapped surface for non-central
collisions (Shu Lin+ ES 2009) and discovery
of critical impact parameter

3.deriving string-string interaction
(Tigran Kalaydzhyan and ES, 2014)

4.collective effects in “spaghetti” multistring system
in the transverse plane (Tigran Kalaydzhyan and ES, 2014)

5. Strings and multistrings in holography
(latrakis, Ramamurti and ES, 2015)
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you what | worked on recently
In connection to hypothetical critical point
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Recent results from SHINE:
central Be Be is nearly the same as pp
but already Ar

WHY? Isn’t it obvious that very peritheral collisions

must be just few nucleons, like light?
Is there some sharp transition between two regimes?

(atomic weight about 40)
Is already close to PbPDb
Again, a hint for rapid transition...
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as a model of thermalization
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Entropy production in collisions of
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Steven S. Gubser,™* Silviu S. Pufu,”" and Amos Yarom?>*
By that time it was clear that formation of QGP fireball
in holographic models
corresponds to formation of black hole
out of some falling objects in the “bulk”

e.g. Shu Lin and myself propose falling membrane Steve Gubser
as a model of thermalization

Gubser et al proposed a new tool :
find the “trapped surface” A
technically it is a “null surface” g > g g = trapped
on which a massless particle — Mtrappe e - )
would move, Bekenstein
neither falling nor flying away.

it Is inequality

If found, the entropy is given by
its area in proper units

because the surface we find
at time zero, and it may grow later




Here is the setting:
a central collision
of two relativistic

Masses

(black holes)
their field is a
gravitational
“shock wave”

the main result:

multiplcity should grow as
E(cm)*(2/3)

the flat surface
Is a boundary
where we live
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Figure 1: A projection of the marginally trapped surface that we use onto a fixed time slice
of the AdS5; geometry. The size of the trapped surface is controlled by the energy of the
massless particles that generate the shock waves. These particles are shown as dark blue
dots.




Famout Fermi-Landau initial condition
— the instant equilibration —
gives E(cm)”*(1/2) or s*(1/4)
worked better for RHIC,
Gubser et al show

but the model is very schematic...

(it was before LHC)
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Grazing Collisions of Gravitational Shock Waves

nonzero impact parameter
then trapped surface is not a sphere!
one needs to find it from complicated eqn,
which we turned to integral eqn and
solved it numerically

we found that there Is a
critical trapped surface
and at impact parameter
b>bc no such surface exists!

no black hole =
no QGP fireball

arX1v:0902.1508v2 [hep-th] 18 Feb 2009

we started much more complicated project:

and Entropy Production in Heavy Ion Collision

Shu Lin', and Edward Shuryak?

Figure 1: (left)The shapes of C (the trapped surface at w = v = 0) at % — 1. The impact
parameters used in the plot are 0.4L, 0.6L, 0.8L, 1.0L, 1.1L, 1.14L from the outer to the
inner. The innermost shape being the critical trapped surface. (right)The shapes of C (the
trapped surface at u = v = 0) at GE’ZE = 100. The impact parameters used in the plot are

1.0L, 2.0L, 3.0L, 4.0L, 5.0L, 5.3L from the outer to the inner. The innermost shape being

the critical trapped surface. As collision energy grows, the trapped surface gets elongated

in the axis of mismatch.



For the first time ever we managed to do so
BEFORE Gubser et al also did it
In their second paper,

Here Is a comparison from
lines are theirs,
the black dots are our numerical solution
as you see, they match perfectly

It is the area (=entropy=multiplcity)
versus the impact parameter
the vertical line Is the location

of the critical value b ¢

Figure 11 (Coloe onbine.) Comparisons between the mamencs of [33 and the amahte foe-
mila 158). The black dashed corve represents the leading term in (38); the solid red ourwe very peripheral collisions do
corresponds to the Grst two terms i (338); the <lnfmi blue curve represents the expresaon NOT produce a fireball
158}, whidh is correct up to a term of oeder Of1/¢*); the green dots represent the numerical
evaluations wsed in figure 3 of 30 lastly, the vertial groen line marks the place where,
aconeding to [, the maximum impact parameter b /L oocurs. We thank S Lin and
E. Shuryak for providing us with the results of their mumencal evaluations,
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Collective interaction of QCD strings and
early stages of high multiplicity pA collisions
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basic mechanism of production of QCD strings
(also called flux tubes)

multistring configuration after collision,
(spaghetti)

when strings are extended longitudinally

Lund model (Pythia etc) true for pp and light

huclel assumes string are broken

INDEPENDENTLY
This cannot be true of the number is large...
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basic mechanism of production of QCD strings
(also called flux tubes)

multistring configuration after collision,
(spaghetti)
when strings are extended longitudinally

Lund model (Pythia etc) true for pp and light

huclel assumes string are broken

INDEPENDENTLY

This cannot be true of the number is large...

Original discussion was for pPb collisions at LHC
for which collective explosion similar to PbPb
was observed (radial and elliptic flows)

Note that its center bin corresponds to collision with about 16 nuclons
thus we speak about > 30 strings
the same applies to central collisions of light nuclei
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A SCALAR EXCHGE IS ATTRACTIVE
AND CANNOT BE SCREENED




correctly neglected in situations for which the Lund model

was originally invented — when only O(1) strings are created ,

but not for spaghetti!
Y D
MOLECULAR DYNAMICS STUDY  *¥ |
% |
0y 0
xR |
—1 ¥ *’* ** —1 !
| *
Y ) S o Y} S * L ) S B

Table 1
Example of changing transverse positions of the 50 string set: the plots correspond to initial

configuration evolved to times T = 0.1, 0.5 and 1 fm/c




the formation of chirally restored fireball

A T T -
: | - 0.5
In the white region quarks become massless *
: o)
which means they have full -~ —1.5
pressure like in QGP %
AND THERE IS AN EXPLOSION %
WE ESTIMATED 0" 25
THAT THE EFFECT
GETS IMPORTANT FOR
N STRING > 30 * _35
_7
(each pair of wounded nucleons %
mean 2 strings ) 45
—4 ]

FIG. 10: (Color online) Instantaneous collective potential
(in units of 2gnxo7) for an AA configuration with b = 11 fm,
gvor = 0.2, N; = 50 at the moment in time 7 = 1fm/c.
White regions correspond to the chirally restored phase.
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to calculate string interactions
one needs to understand
one of the most diffucult
subject in hadronic spectroscopy
meson-glueball mixing
In scalar 0++ channel

without mixing, strings interact
only by glueball exchange,
and the lightest
scalar glueball has mass
of about 1.6 GeV

the mass of lightest scalar meson
sigma is only 0.4-0.6 GeV

sigma is the crucial
element for nuclear attractive
force and its binding
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Collective String Interactions in AdS/QCD
and High Multiplicity pA Collisions

to calculate string interactions  Tpannis Tatrakis,* Adith Ramamurti,’ and Edward Shuryak?
one needs to understand

one of the most diffucult
subject in hadronic spectroscopy
meson-glueball mixing
In scalar 0++ channel

@ Coupled System Eigenvalues

without mixing, strings interact
only by glueball exchange,

—4} m Decoupled Gluon Eigenvalues

I andl thg I'I?Etes't T effective model AdS/QCD WAS
scajar giueball nas mass DEVELOPED BY Kiritsis et al
of about 1.6 GeV . :
In great details
we had all the parameters,
and just calculated the
mixing of scalars

the mass of lightest scalar meson
sigma is only 0.4-0.6 GeV

sigma is the crucial
element for nuclear attractive
force and its binding

the results agreed with lattice
finding of the coupling
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Many-body forces and nucleon clustering near the QCD critical point

ES and J. M. Torres-Rincon, Phys. Rev. C100, 024903 (2019),
arXiv:1805.04444 [hep-ph].

ES and J. M. Torres-Rincon, Phys. Rev. C101, 034914 (2020),
arXiv:1910.08119 [nucl-th].

D. DeMartini and ES (2020), arXiv:2007.04863 [nucl-th].

Many-body forces and nucleon clustering near the QCD critical
point D. DeMartini and E. Shuryak, e-Print: 2010.02785
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The main idea of this work:

Suppose the CP indeed exists, and 1s located 1n the part of the phase diagram near the
freezeout line of BES program collisions. Furthermore, while scanning this line, for some
specific beam energy one happens to be 1n a state in which the correlation length reaches ¢
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Suppose the CP indeed exists, and 1s located 1n the part of the phase diagram near the
freezeout line of BES program collisions. Furthermore, while scanning this line, for some
specific beam energy one happens to be 1n a state in which the correlation length reaches ¢
value Emax ~ 1.5-2fm. What observables are sensitive to such scale of &7

Side remark: too many domains. sound waves which we observed

have the wavelength much larger than 2 fm, 2piR/m =6fm or more

gmanl/mJNO4fm gmaa:szm .
Pre-clustering of nucleons create

objects of the right scale !
Their energy — and therefore production yield
— Is very sensitive to correlation length

As we will show, the interplay of attractive binary
And repulsive manybody forces
short range, Will lead to very non-monotonous signal

far from CP
nuclear forces are

near CP one needs to

binary forces
iInclude manybody forces

dominate
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‘Let us now look at experimental kurtosis

eOlder STAR data have shown large effect
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Two dips for central bins

large at 2 and smaller at 20 GeV?
Errors still large => BESI|
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Still non-monotonous signal?
Clearly much more accurate measurements
from BeS-Il are needed
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‘Let us now look at light nuclei production: the tritium ratio
In this ratio the main driver
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