Renormalization of non-singlet quark OMEs for DIS

Sam Van Thurenhout

PARTICLEFACE 2021

15 July 2021
In collaboration with Sven-Olaf Moch

Based on [hep-ph/2107.02470]

Introduction

- In QCD: Factorization between hard scales (e.g. hard partonic cross-sections, perturbative) and soft scales (e.g. PDFs, non-perturbative)
- Important non-perturbative information from operator matrix elements (OMEs)

$$
\left\langle\psi\left(p_{1}\right)\right| \mathcal{O}\left(p_{3}\right)\left|\bar{\psi}\left(p_{2}\right)\right\rangle
$$

Introduction

OMEs describe different physical quantities depending on momentum flow, e.g.

- Forward kinematics, $\langle\psi(p)| \mathcal{O}(0)|\bar{\psi}(-p)\rangle$: PDFs
- Off-forward kinematics, $\left\langle\psi\left(p_{1}\right)\right| \mathcal{O}\left(p_{3}\right)\left|\bar{\psi}\left(p_{2}\right)\right\rangle$: GPDs and pion form factor
All these non-perturbative quantities can be extracted from experiment (e.g. DIS and DVCS) or lattice QCD (e.g. [1, 2] and for recent progress $[3,4,5,6,7,8]$)

The scale dependence of these distributions can be calculated perturbatively (RGE)

$$
\frac{d \mathcal{O}}{d \log \mu^{2}}=-\gamma \mathcal{O}, \gamma \equiv a_{s} \gamma^{(0)}+a_{s}^{2} \gamma^{(1)}+\ldots
$$

During this talk: Off-forward kinematics

Operator definitions

We are interested in spin- N non-singlet quark operators of the form

$$
O_{\mu_{1} \ldots \mu_{N}}^{N S}=S \bar{\psi} \lambda^{\alpha} \gamma_{\mu_{1}} D_{\mu_{2}} \ldots D_{\mu_{N}} \psi, D_{\mu}=\partial_{\mu}-i g_{s} A_{\mu}
$$

which e.g. show up in the OPE analysis of DIS. In practice we consider

$$
\Delta^{\mu_{1}} \ldots \Delta^{\mu_{N}} \mathcal{O}_{\mu_{1} \ldots \mu_{N}}^{N S} \equiv \mathcal{O}_{N}, \Delta^{2}=0
$$

Because of the non-zero momentum flow through the operator-vertex, these will mix with total-derivative operators

$$
\begin{aligned}
& \mathcal{O}_{p, q, r}^{\mathcal{D}}=S \partial^{\mu_{1}} \ldots \partial^{\mu_{p}}\left(\left(D^{\nu_{1}} \ldots D^{\nu_{q}} \bar{\psi}\right) \lambda^{\alpha} \gamma_{\mu}\left(D^{\sigma_{1}} \ldots D^{\sigma_{r}} \psi\right)\right) \\
& p+q+r=N-1
\end{aligned}
$$

Choice of basis for total-derivative operators is not unique! This one: (Total) derivative basis \mathcal{D} (see e.g. [9, 10])

Operator renormalization

In the chosen basis the operators renormalize as

$$
\mathcal{O}_{N+1}=z_{\psi}\left(z_{N, N}\left[\mathcal{O}_{N+1}\right]+z_{N, N-1}\left[\partial \mathcal{O}_{N}\right]+\cdots+z_{N, 0}\left[\partial^{N} \mathcal{O}_{1}\right]\right)
$$

For the full spin- $(\mathrm{N}+1)$ sector:

$$
\left(\begin{array}{c}
\mathcal{O}_{N+1} \\
\partial \mathcal{O}_{N} \\
\vdots \\
\partial^{N} \mathcal{O}_{1}
\end{array}\right)=Z_{\psi}\left(\begin{array}{cccc}
Z_{N, N} & Z_{N, N-1} & \ldots & Z_{N, 0} \\
0 & Z_{N-1, N-1} & \ldots & Z_{N-1,0} \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & Z_{0,0}
\end{array}\right)\left(\begin{array}{c}
{\left[\mathcal{O}_{N+1}\right]} \\
{\left[\partial \mathcal{O}_{N}\right]} \\
\vdots \\
{\left[\partial^{N} \mathcal{O}_{1}\right]}
\end{array}\right)
$$

Anomalous dimension matrix

We are interested in the corresponding anomalous dimension matrix (ADM)

$$
\gamma_{N, k}^{\mathcal{D}}=-\left(\frac{d}{d \ln \mu^{2}} Z_{N, j}\right) Z_{j, k}^{-1}
$$

and

$$
\left(\begin{array}{cccc}
\gamma_{N, N} & \gamma_{N, N-1}^{\mathcal{D}} & \cdots & \gamma_{N, 0}^{\mathcal{D}} \\
0 & \gamma_{N-1, N-1} & \cdots & \gamma_{N-1,0}^{\mathcal{D}} \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \gamma_{0,0}
\end{array}\right)
$$

The diagonal elements correspond to the forward anomalous dimensions. The off-diagonal elements are a priori unknown (only low- N results known in literature up to 3 -loops in \mathcal{D}-basis $[11,12]$)
Is it possible to determine the full mixing matrix for arbitrary N ?

Diagonal (forward) anomalous dimensions

$$
\left(\begin{array}{cccc}
\gamma_{N, N} & \gamma_{N, N-1}^{\mathcal{D}} & \cdots & \gamma_{N, 0}^{\mathcal{D}} \\
0 & \gamma_{N-1, N-1} & \cdots & \gamma_{N-1,0}^{\mathcal{D}} \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \cdots & \gamma_{0,0}
\end{array}\right)
$$

The scale dependence of the PDFs is determined by the DGLAP equation

$$
\frac{\mathrm{d} f_{a}\left(x, \mu^{2}\right)}{\mathrm{d} \log \mu^{2}}=\left[P_{a b} \otimes f_{b}\right](x)
$$

and the splitting functions are related to the forward anomalous dimensions

$$
\gamma_{N S}(N) \equiv \gamma_{N-1, N-1}=-\int_{0}^{1} \mathrm{~d} x x^{N-1} P_{N S}(x)
$$

Known completely up to the 3-loop level, and in certain limits up to the 5-loop level $[13,14,15,16,17,18,19,20,21]$

Constraints on the anomalous dimensions

Working in the chiral limit, left- and right-derivative operators ${ }^{1}$ renormalize with the same renormalization constants

$$
\begin{aligned}
& \mathcal{O}_{p, 0, r}^{\mathcal{D}}=\sum_{j=0}^{r} Z_{r, r-j}\left[\mathcal{O}_{p+j, 0, r-j}^{\mathcal{D}}\right], \\
& \mathcal{O}_{p, q, 0}^{\mathcal{D}}=\sum_{j=0}^{q} Z_{q, q-j}\left[\mathcal{O}_{p+j, q-j, 0}^{\mathcal{D}}\right]
\end{aligned}
$$

and total derivatives act as

$$
\mathcal{O}_{p, q, r}^{\mathcal{D}}=\mathcal{O}_{p-1, q+1, r}^{\mathcal{D}}+\mathcal{O}_{p-1, q, r+1}^{\mathcal{D}}
$$

e.g.

$$
\mathcal{O}_{0, N, 0}^{\mathcal{D}}-(-1)^{N} \sum_{j=0}^{N}(-1)^{j}\binom{N}{j} \mathcal{O}_{j, 0, N-j}^{\mathcal{D}}=0
$$

$$
{ }^{1} \mathcal{O}_{p, q, r}^{D}=S \partial^{\mu_{1}} \ldots \partial^{\mu_{p}}\left(\left(D^{\nu_{1}} \ldots D^{\nu_{q}} \bar{\psi}\right) \lambda^{\alpha} \gamma_{\mu}\left(D^{\sigma_{1}} \ldots D^{\sigma_{r}} \psi\right)\right.
$$

Constraints on the anomalous dimensions

These lead to a relation between sums of the elements of the mixing matrix
$\forall k: \sum_{j=k}^{N}\left\{(-1)^{k}\binom{j}{k} \gamma_{N, j}^{\mathcal{D}}-(-1)^{j}\binom{N}{j} \gamma_{j, k}^{\mathcal{D}}\right\}=0$
$\left(\begin{array}{ccccccc}\gamma_{N, N} & \gamma_{N, N-1}^{\mathcal{D}} & \gamma_{N, N-2}^{\mathcal{D}} & \ldots & \gamma_{N, k}^{\mathcal{D}} & \cdots & \gamma_{N, 0}^{\mathcal{D}} \\ 0 & \gamma_{N-1, N-1} & \gamma_{N-1, N-2}^{\mathcal{D}} & \ldots & \gamma_{N-1, k}^{\mathcal{D}} & \cdots & \gamma_{N-1,0}^{\mathcal{D}} \\ \vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \gamma_{k, k} & \cdots & \vdots \\ \vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots & \gamma_{0,0}\end{array}\right)$

Valid to all orders in a_{s}

Constraints on the anomalous dimensions

Special cases:

- $k=N-1^{2}$

$$
\gamma_{N, N-1}^{\mathcal{D}}=\frac{N}{2}\left(\gamma_{N-1, N-1}-\gamma_{N, N}\right)
$$

$\left(\begin{array}{ccccccc}\gamma_{N, N} & \gamma_{N, N-1}^{\mathcal{D}} & \gamma_{N, N-2}^{\mathcal{D}} & \ldots & \gamma_{N, k}^{\mathcal{D}} & \ldots & \gamma_{N, 0}^{\mathcal{D}} \\ 0 & \gamma_{N-1, N-1} & \gamma_{N-1, N-2}^{\mathcal{D}} & \ldots & \gamma_{N-1, k}^{\mathcal{D}} & \cdots & \gamma_{N-1,0}^{\mathcal{D}} \\ \vdots & \vdots & \vdots & \ldots & \vdots & \ldots & \vdots \\ 0 & 0 & 0 & \ldots & \gamma_{k, k} & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ldots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots & \gamma_{0,0}\end{array}\right)$

[^0] communication.

Constraints on the anomalous dimensions

- $k=0$

$$
\gamma_{N, 0}^{\mathcal{D}}=(-)^{N}\left[\sum_{i=0}^{N} \gamma_{N, i}^{\mathcal{D}}-\sum_{j=1}^{N-1}(-)^{j}\binom{N}{j} \gamma_{j, 0}^{\mathcal{D}}\right]
$$

$$
\left(\begin{array}{ccccccc}
\gamma_{N, N} & \gamma_{N, N-1}^{\mathcal{D}} & \gamma_{N, N-2}^{\mathcal{D}} & \ldots & \gamma_{N, k}^{\mathcal{D}} & \ldots & \gamma_{N, 0}^{\mathcal{D}} \\
0 & \gamma_{N-1, N-1} & \gamma_{N-1, N-2}^{\mathcal{D}} & \ldots & \gamma_{N-1, k}^{\mathcal{D}} & \cdots & \gamma_{N-1,0}^{\mathcal{D}} \\
\vdots & \vdots & \vdots & \ldots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \ldots & \gamma_{k, k} & \cdots & \vdots \\
\vdots & \vdots & \vdots & \ldots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \cdots & \gamma_{0,0}
\end{array}\right)
$$

Constraints on the anomalous dimensions

General case:

$$
\begin{aligned}
\gamma_{N, k}^{\mathcal{D}}= & \binom{N}{k} \sum_{j=0}^{N-k}(-1)^{j}\binom{N-k}{j} \gamma_{j+k, j+k} \\
& +\sum_{j=k}^{N}(-1)^{k}\binom{j}{k} \sum_{l=j+1}^{N}(-1)^{\prime}\binom{N}{l} \gamma_{l, j}^{\mathcal{D}}
\end{aligned}
$$

Can be used to construct the complete ADM from the knowledge of the forward anomalous dimensions $\gamma_{N, N}$ and the last column $\gamma_{N, 0}^{\mathcal{D}}$!

4-step algorithm for constructing the ADM

(1) Determine all- N expressions for $\gamma_{N, N-1}^{\mathcal{D}}$ and $\gamma_{N, 0}^{\mathcal{D}}$
(2) Calculate

$$
\binom{N}{k} \sum_{j=0}^{N-k}(-1)^{j}\binom{N-k}{j} \gamma_{j+k, j+k}
$$

and construct an Ansatz for the off-diagonal piece
(3) Calculate

$$
\sum_{j=k}^{N}(-1)^{k}\binom{j}{k} \sum_{l=j+1}^{N}(-1)^{\prime}\binom{N}{l} \gamma_{l, j}^{\mathcal{D}}
$$

(9) Substitute into the consistency relation \Rightarrow System of equations + boundary condition for $k=0$

Feynman diagrams and $\gamma_{N, 0}$

The diagrams are generated with QGraf [22] and calculated using Forcer [23], which efficiently deals with massless propagator-type diagrams in dimensional regularization
\rightarrow Nullify one of the external momenta: $\langle\psi(p)| \mathcal{O}(-p)|\bar{\psi}(0)\rangle$

Feynman diagrams and $\gamma_{N, 0}$

Remember the renormalization pattern

$$
\begin{gathered}
\mathcal{O}_{N+1}=Z_{\psi}\left(Z_{N, N}\left[\mathcal{O}_{N+1}\right]+Z_{N, N-1}\left[\partial \mathcal{O}_{N}\right]+\cdots+Z_{N, 0}\left[\partial^{N} \mathcal{O}_{1}\right]\right) \\
\Rightarrow \mathcal{B}(N+1) \equiv \mathcal{O}_{N+1} / \epsilon \sim \sum_{i=0}^{N} \gamma_{N, i}^{\mathcal{D}}
\end{gathered}
$$

and the relation for the last column

$$
\begin{aligned}
\gamma_{N, 0}^{\mathcal{D}} & =(-)^{N}\left[\sum_{i=0}^{N} \gamma_{N, i}^{\mathcal{D}}-\sum_{j=1}^{N-1}(-)^{j}\binom{N}{j} \gamma_{j, 0}^{\mathcal{D}}\right] \\
& \Rightarrow \gamma_{N, 0}^{\mathcal{D}}=\sum_{i=0}^{N}(-1)^{i}\binom{N}{i} \mathcal{B}(i+1)
\end{aligned}
$$

Example new result: Leading- n_{f} part of 4-loop ADM

We present here the leading- n_{f} part of the 4-loop off-diagonal elements of the ADM. The Riemann-Zeta function

$$
\zeta_{3} \equiv \sum_{i=1}^{\infty} \frac{1}{i^{3}}
$$

will appear as well as harmonic sums, which are recursively defined as $[24,25]$

$$
\begin{aligned}
& S_{ \pm m}(N)=\sum_{i=1}^{N} \frac{(\pm 1)^{i}}{i^{m}} \\
& S_{ \pm m_{1}, m_{2}}, \ldots, m_{d} \\
&(N)=\sum_{i=1}^{N} \frac{(\pm 1)^{i}}{i^{m_{1}}} S_{m_{2}, \ldots, m_{d}}(i)
\end{aligned}
$$

Example new result: Leading- n_{f} part of 4-loop ADM

$$
\begin{aligned}
\gamma_{N, k}^{\mathcal{D},(3)}= & \frac{8}{27} n_{f}^{3} C_{F}\left\{\frac{1}{3}\left(S_{1}(N)-S_{1}(k)\right)^{3}\left(\frac{1}{N+2}-\frac{1}{N-k}\right)\right. \\
& +\left(S_{1}(N)-S_{1}(k)\right)^{2}\left(\frac{5}{3} \frac{1}{N-k}+\frac{2}{N+1}-\frac{11}{3} \frac{1}{N+2}+\frac{1}{(N+2)^{2}}\right) \\
& +\left(S_{1}(N)-S_{1}(k)\right)\left(S_{2}(N)-S_{2}(k)\right)\left(\frac{1}{N+2}-\frac{1}{N-k}\right) \\
& +2\left(S_{1}(N)-S_{1}(k)\right)\left(\frac{1}{3} \frac{1}{N-k}-\frac{13}{3} \frac{1}{N+1}+\frac{2}{(N+1)^{2}}+\frac{4}{N+2}\right. \\
& \left.-\frac{11}{3} \frac{1}{(N+2)^{2}}+\frac{1}{(N+2)^{3}}\right)+\left(S_{2}(N)-S_{2}(k)\right)\left(\frac{5}{3} \frac{1}{N-k}\right. \\
& \left.+\frac{2}{N+1}-\frac{11}{3} \frac{1}{N+2}+\frac{1}{(N+2)^{2}}\right)+\frac{2}{3}\left(S_{3}(N)-S_{3}(k)\right)\left(\frac{1}{N+2}\right. \\
& \left.-\frac{1}{N-k}\right)+\frac{2}{3} \frac{1}{N-k}+\frac{2}{N+1}-\frac{26}{3} \frac{1}{(N+1)^{2}}+\frac{4}{(N+1)^{3}} \\
& \left.-\frac{8}{3} \frac{1}{N+2}+\frac{8}{(N+2)^{2}}-\frac{22}{3} \frac{1}{(N+2)^{3}}+\frac{2}{(N+2)^{4}}+4 \zeta_{3}\left(\frac{1}{N+2}-\frac{1}{N-k}\right)\right\}
\end{aligned}
$$

Comparison with calculations in the Gegenbauer basis

In conformal calculations, the ADM has been calculated completely up to 3-loop order in another basis for the total derivative operators (see e.g. [26,27] for details). It is possible to relate the anomalous dimensions in both bases (new)

$$
\sum_{j=0}^{N}(-1)^{j} \frac{(j+2)!}{j!} \gamma_{N, j}^{\mathcal{G}}=\frac{1}{N!} \sum_{j=0}^{N}(-1)^{j}\binom{N}{j} \frac{(N+j+2)!}{(j+1)!} \sum_{l=0}^{j} \gamma_{j, l}^{\mathcal{D}}
$$

Using this relation and our 4-loop result, we can also derive the 4-loop leading- n_{f} part of the ADM in the Gegenbauer basis

Leading- n_{f} part of 4-loop Gegenbauer ADM (new)

$$
\begin{aligned}
\gamma_{N, k}^{\mathcal{G},(3)}= & \frac{64}{27} \frac{n_{f}^{3} C_{F}}{a(N, k)} \vartheta_{N, k}\left\{-\frac{2}{3}\left(S_{1}(N)-S_{1}(k)\right)^{3}(2 k+3)+\left(S_{1}(N)-S_{1}(k)\right)^{2}\right. \\
& \times(2 k+3)\left(\frac{5}{3}-\frac{1}{N+1}-\frac{1}{N+2}\right)+\left(S_{1}(N)-S_{1}(k)\right)^{2}\left(4+\frac{1}{k+1}\right. \\
& \left.-\frac{1}{k+2}\right)+\left(S_{1}(N)-S_{1}(k)\right)(2 k+3)\left(\frac{1}{3}-\frac{1}{3} \frac{1}{N+1}-\frac{1}{(N+1)^{2}}\right. \\
& \left.+\frac{11}{3} \frac{1}{N+2}-\frac{1}{(N+2)^{2}}\right)+\left(S_{1}(N)-S_{1}(k)\right)\left(-\frac{20}{3}+\frac{4}{N+1}+\frac{2}{N+1} \frac{1}{k+1}\right. \\
& \left.-\frac{5}{3} \frac{1}{k+1}-\frac{1}{(k+1)^{2}}+\frac{4}{N+2}-\frac{2}{N+2} \frac{1}{k+2}+\frac{5}{3} \frac{1}{k+2}+\frac{1}{(k+2)^{2}}\right) \\
& +(2 k+3)\left(\frac{7}{3} \frac{1}{N+1}-\frac{1}{6} \frac{1}{(N+1)^{2}}-\frac{1}{2} \frac{1}{(N+1)^{3}}-\frac{2}{N+2}+\frac{11}{6} \frac{1}{(N+2)^{2}}\right. \\
& \left.-\frac{1}{2} \frac{1}{(N+2)^{3}}-\frac{1}{3}\left(S_{3}(N)-S_{3}(k)\right)\right)-\frac{2}{3}+\frac{2}{3} \frac{1}{N+1}+\frac{2}{(N+1)^{2}} \\
& +\frac{1}{(N+1)^{2}} \frac{1}{k+1}-\frac{5}{3} \frac{1}{N+1} \frac{1}{k+1}-\frac{1}{N+1} \frac{1}{(k+1)^{2}}-\frac{8}{3} \frac{1}{k+1}+\frac{5}{6} \frac{1}{(k+1)^{2}} \\
& +\frac{1}{2} \frac{1}{(k+1)^{3}}-\frac{22}{3} \frac{1}{N+2}+\frac{2}{(N+2)^{2}}-\frac{1}{(N+2)^{2}} \frac{1}{k+2}+\frac{5}{3} \frac{1}{N+2} \frac{1}{k+2} \\
& \left.+\frac{1}{N+2} \frac{1}{(k+2)^{2}}+\frac{5}{3} \frac{1}{k+2}-\frac{5}{6} \frac{1}{(k+2)^{2}}-\frac{1}{2} \frac{1}{(k+2)^{3}}\right\}
\end{aligned}
$$

Conclusions and outlook

- New method for calculating off-diagonal elements of ADM, based on renormalization structure in chiral limit
- Checks and extends previous calculations, both in the derivative and in Gegenbauer bases
- Nice advantage of our method: Well-suited for automation with computer algebra programs
- Possible to go beyond the leading- n_{f} limit, see [hep-ph/2107.02470] for more details
- Generalize method to different operators (e.g. flavor singlet operators) in QCD and different models (e.g. gradient operators in scalar field theories) \rightarrow needs to be studied

End

Thank you for your attention!

Backup and references

(11) Deep inelastic scattering
(12) ADM in the Gegenbauer basis
(13) Calculating sums
(14) Feynman rules for operator insertions
(15) References

Deep inelastic scattering (DIS) ${ }^{3}$

Particularly important process: DIS (can e.g. probe proton structure)

${ }^{3}$ See e.g. M. Schwarz, Quantum Field Theory and the Standard Model

Deep inelastic scattering

Physical cross section is proportional to

$$
\frac{1}{q^{4}} L_{\mu \nu} H^{\mu \nu}
$$

- $L_{\mu \nu}$: Leptonic tensor (electron information, trivial)
- $H^{\mu \nu}$: Hadronic tensor (quantum corrections, hard)

Relate $H_{\mu \nu}$ to electromagnetic currents

$$
H_{\mu \nu}=\int d^{4} x e^{i q \cdot x}\langle P| J_{\mu}(x) J_{\nu}(0)|P\rangle
$$

where

$$
J_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)=(c \rho, \vec{j})
$$

- \bar{q} / q : (Anti-) quark
- γ_{μ} : Dirac gamma matrix

Operator product expansion (OPE)

Main idea: Write a product of operators at the same point as a sum, which is easier to handle

$$
\lim _{x \rightarrow y} O(x) O(y)=\sum_{n} C_{n}(x-y) O_{n}(x)
$$

More practical in momentum space

$$
\int d^{4} x e^{i q \cdot x} O(x) O(0)=\sum_{n} C_{n}(q) O_{n}(0)
$$

$C_{n}(q)$: Wilson coefficients (universal numbers)

Operator product expansions and DIS

Now apply the OPE to DIS

$$
J^{\mu}(x) J^{\nu}(y)=\sum_{n} C_{n}(x-y) O_{n}^{\mu \nu}(x)
$$

The type of operators that will appear on the RHS are of the following form

$$
O_{\mu_{1} \ldots \mu_{N}}=\mathcal{S} \bar{q} \gamma_{\mu_{1}} D_{\mu_{2}} \ldots D_{\mu_{N}} q
$$

where

- $D_{\mu}=\partial_{\mu}-i g_{s} A_{\mu} ; A_{\mu}$ gluon
- \mathcal{S} : Symmetrization

Compare this with the standard electromagnetic current

$$
J_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)
$$

ADM in the Gegenbauer basis

We start by introducing the renormalized non-local light-ray operators [O], which act as generating functions for local operators, see e.g. [27], as

$$
[\mathcal{O}]\left(x ; z_{1}, z_{2}\right)=\sum_{m, k} \frac{z_{1}^{m} z_{2}^{k}}{m!k!}\left[\bar{\psi}(x)(\overleftarrow{D} \cdot n)^{m} \pitchfork(n \cdot \vec{D})^{k} \psi(x)\right]
$$

The renormalization group equation for these light-ray operators can be written as

$$
\left(\mu^{2} \partial_{\mu^{2}}+\beta\left(a_{s}\right) \partial_{a_{s}}+\mathcal{H}\left(a_{s}\right)\right)[\mathcal{O}]\left(z_{1}, z_{2}\right)=0
$$

The evolution operator $\mathcal{H}\left(a_{s}\right)$ is an integral operator and acts on the light-cone coordinates of the fields [28]

$$
\mathcal{H}\left(a_{s}\right)[\mathcal{O}]\left(z_{1}, z_{2}\right)=\int_{0}^{1} d \alpha \int_{0}^{1} d \beta h(\alpha, \beta)[\mathcal{O}]\left(z_{12}^{\alpha}, z_{21}^{\beta}\right)
$$

with $z_{12}^{\alpha} \equiv z_{1}(1-\alpha)+z_{2} \alpha$ and the evolution kernel $h(\alpha, \beta)$. The moments of the evolution kernel correspond to the anomalous dimensions of the local operators

ADM in the Gegenbauer basis

The light-ray operators admit an expansion in a basis of local operators in terms of Gegenbauer polynomials, see e.g. [26],

$$
\mathcal{O}_{N, k}^{\mathcal{G}}=\left.\left(\partial_{z_{1}}+\partial_{z_{2}}\right)^{k} C_{N}^{3 / 2}\left(\frac{\partial_{z_{1}}-\partial_{z_{2}}}{\partial_{z_{1}}+\partial_{z_{2}}}\right) \mathcal{O}\left(z_{1}, z_{2}\right)\right|_{z_{1}=z_{2}=0}
$$

where $k \geq N$ is the total number of derivatives. The Gegenbauer polynomials can be written as [29]

$$
C_{N}^{\nu}(z)=\frac{\Gamma(\nu+1 / 2)}{\Gamma(2 \nu)} \sum_{l=0}^{N}(-1)^{\prime} \frac{\Gamma(2 \nu+N+I)}{l!(N-I)!\Gamma(\nu+1 / 2+I)}\left(\frac{1}{2}-\frac{z}{2}\right)^{\prime}
$$

The renormalized operators $\left[\mathcal{O}_{N, k}^{\mathcal{G}}\right]$ obey the evolution equation

$$
\left(\mu^{2} \partial_{\mu^{2}}+\beta\left(a_{s}\right) \partial_{a_{s}}\right)\left[\mathcal{O}_{N, k}^{\mathcal{G}}\right]=\sum_{j=0}^{N} \gamma_{N, j}^{\mathcal{G}}\left[\mathcal{O}_{j, k}^{\mathcal{G}}\right]
$$

Calculating sums

Using our constructive algorithm, we have to evaluate single and double sums involving harmonic sums and denominators. This can be done by using the principles of symbolic summation, see e.g. [30, 31] for extensive overviews. Particularly helpful for these purposes is the Mathematica package Sigma [32], which uses the creative telescoping algorithm.

Calculating sums

Telescoping: Suppose we have a summation $\sum_{k=a}^{N} f(k)$ \rightarrow Find function $g(N)$ such that the summand can be written as

$$
\begin{gathered}
f(k)=\Delta g(k) \equiv g(k+1)-g(k) \\
\Rightarrow \sum_{k=a}^{N} f(k)=\sum_{k=a}^{N} g(k+1)-\sum_{k=a}^{N} g(k) \\
=g(N+1)-g(a)
\end{gathered}
$$

\sim discrete version of symbolic integration:

$$
f(x)=D g(x) \equiv \frac{d}{d x} g(x) \Rightarrow \int_{a}^{b} f(x) d x=g(b)-g(a)
$$

Calculating sums

Creative telescoping [33]: Suppose we have the summation $\sum_{k=a}^{b} f(n, k) \equiv S(n)$
\Rightarrow Find functions $c_{0}(n), \ldots, c_{d}(n)$ and $g(n, k)$ such that

$$
g(n, k+1)-g(n, k)=c_{0}(n) f(n, k)+\ldots+c_{d}(n) f(n+d, k)
$$

Now apply summation on both sides of the equation

$$
\Rightarrow g(n, b+1)-g(n, a)=c_{0}(n) \sum_{k=a}^{b} f(n, k)+\ldots+c_{d}(n) \sum_{k=a}^{b} f(n+d, k)
$$

\Rightarrow Inhomogeneous recurrence for original sum

$$
q(n)=c_{0}(n) S(n)+\ldots+c_{d}(n) S(n+d)
$$

Calculating sums

- In this way, Sigma generates and solves recurrence for given summation problem
- Solution consists of solution set for homogeneous recurrence + particular solution
- For final closed expression of summation: Determine linear combination of solutions that has same initial values as the given sum

Feynman rules for operator insertions

Contract OMEs with $\Delta_{\mu_{1}} \ldots \Delta_{\mu_{N}}, \Delta^{2}=0$, see e.g. [19]

$$
\Delta\left(\Delta \cdot p_{2}\right)^{N-1}
$$

$$
\begin{aligned}
& g^{2} \Delta \Delta^{\mu_{3}} \Delta^{\mu_{4}} \sum_{j_{1}=0}^{N-3} \sum_{j_{2}=0}^{j_{1}}\left(p_{2} \cdot \Delta\right)^{N-3-j_{1}}\left(q \cdot \Delta-p_{1} \cdot \Delta\right)^{j_{2}} \\
& \left(t^{a_{3}} t^{a_{4}}\left(q \cdot \Delta-p_{1} \cdot \Delta-p_{3} \cdot \Delta\right)^{j_{1}-j_{2}}\right. \\
& \left.+t^{a_{4}} t^{a_{3}}\left(q \cdot \Delta-p_{1} \cdot \Delta-p_{4} \cdot \Delta\right)^{j_{1}-j_{2}}\right)
\end{aligned}
$$

References I

[1] QCDSF collaboration, M. Göckeler, R. Horsley, D. Pleiter, P.E.L. Rakow and G. Schierholz, A Lattice determination of moments of unpolarised nucleon structure functions using improved Wilson fermions, Phys. Rev. D 71 (2005) 114511 [hep-ph/0410187].
[2] M. Göckeler et al., Perturbative and Nonperturbative Renormalization in Lattice QCD, Phys. Rev. D 82 (2010) 114511 [arXiv:1003.5756].
[3] V.M. Braun, S. Collins, M. Göckeler, P. Pérez-Rubio, A. Schäfer, R.W. Schiel et al., Second Moment of the Pion Light-cone Distribution Amplitude from Lattice QCD, Phys. Rev. D 92 (2015) 014504 [arXiv:1503.03656].
[4] V.M. Braun et al., The ρ-meson light-cone distribution amplitudes from lattice QCD, JHEP 04 (2017) 082 [arXiv:1612.02955].

References II

[5] G.S. Bali, S. Collins, M. Göckeler, R. Rödl, A. Schäfer and A. Sternbeck, Nucleon generalized form factors from two-flavor lattice QCD, Phys. Rev. D 100 (2019) 014507 [arXiv:1812.08256].
[6] RQCD collaboration, G.S. Bali, V.M. Braun, S. Bürger, M. Göckeler, M. Gruber, F. Hutzler et al., Light-cone distribution amplitudes of pseudoscalar mesons from lattice QCD, JHEP 08 (2019) 065 [arXiv: 1903.08038].
[7] T. Harris, G. von Hippel, P. Junnarkar, H.B. Meyer, K. Ottnad, J. Wilhelm et al., Nucleon isovector charges and twist-2 matrix elements with $N_{f}=2+1$ dynamical Wilson quarks, Phys. Rev. D 100 (2019) 034513 [arXiv:1905.01291].

References III

[8] C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen et al., Complete flavor decomposition of the spin and momentum fraction of the proton using lattice $Q C D$ simulations at physical pion mass, Phys. Rev. D 101 (2020) 094513 [arXiv:2003.08486].
[9] J.A. Gracey, Two loop renormalization of the $n=2$ Wilson operator in the RI'/SMOM scheme, JHEP 03 (2011) 109 [arXiv:1103.2055].
[10] J.A. Gracey, Amplitudes for the $n=3$ moment of the Wilson operator at two loops in the RI/'SMOM scheme, Phys. Rev. D 84 (2011) 016002 [arXiv:1105.2138].
[11] J.A. Gracey, Three loop anti-MS operator correlation functions for deep inelastic scattering in the chiral limit, JHEP 04 (2009) 127 [arXiv:0903.4623].

References IV

[12] B.A. Kniehl and O.L. Veretin, Moments $n=2$ and $n=3$ of the Wilson twist-two operators at three loops in the RI'/SMOM scheme, Nucl. Phys. B 961 (2020) 115229 [arXiv:2009.11325].
[13] D.J. Gross and F. Wilczek, Asymptotically Free Gauge Theories - I, Phys. Rev. D 8 (1973) 3633.
[14] E.G. Floratos, D.A. Ross and C.T. Sachrajda, Higher Order Effects in Asymptotically Free Gauge Theories: The Anomalous Dimensions of Wilson Operators, Nucl. Phys. B 129 (1977) 66.
[15] S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192].

References V

[16] V.N. Velizhanin, Four loop anomalous dimension of the second moment of the non-singlet twist-2 operator in QCD, Nucl. Phys. B 860 (2012) 288 [arXiv:1112.3954].
[17] V.N. Velizhanin, Four-loop anomalous dimension of the third and fourth moments of the nonsinglet twist-2 operator in QCD, Int. J. Mod. Phys. A 35 (2020) 2050199 [arXiv:1411.1331].
[18] B. Ruijl, T. Ueda, J.A.M. Vermaseren, J. Davies and A. Vogt, First Forcer results on deep-inelastic scattering and related quantities, PoS LL2016 (2016) 071 [arXiv:1605.08408].
[19] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond, JHEP 10 (2017) 041 [arXiv:1707.08315].

References VI

[20] J.A. Gracey, Anomalous dimension of nonsinglet Wilson operators at $O\left(1 / n_{f}\right)$ in deep inelastic scattering, Phys. Lett. B 322 (1994) 141 [hep-ph/9401214].
[21] F. Herzog, S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Five-loop contributions to low-N non-singlet anomalous dimensions in QCD, Phys. Lett. B 790 (2019) 436 [arXiv:1812.11818].
[22] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.
[23] B. Ruijl, T. Ueda and J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, Comput. Phys. Commun. 253 (2020) 107198 [arXiv:1704.06650].

References VII

[24] J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A 14 (1999) 2037 [hep-ph/9806280].
[25] J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D 60 (1999) 014018 [hep-ph/9810241].
[26] A.V. Belitsky and D. Müller, Broken conformal invariance and spectrum of anomalous dimensions in QCD, Nucl. Phys. B 537 (1999) 397 [hep-ph/9804379].
[27] V.M. Braun, A.N. Manashov, S. Moch and M. Strohmaier, Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics, JHEP 06 (2017) 037 [arXiv:1703.09532].
[28] I.I. Balitsky and V.M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B 311 (1989) 541.

References VIII

[29] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, The NIST Handbook of Mathematical Functions, Cambridge Univ. Press (2010).
[30] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete mathematics a foundation for computer science., Addison-Wesley (1989).
[31] M. Kauers and P. Paule, The Concrete Tetrahedron - Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates, Texts \& Monographs in Symbolic Computation, Springer (2011), 10.1007/978-3-7091-0445-3.
[32] C. Schneider, The summation package sigma: Underlying principles and a rhombus tiling application, Discrete Math. Theor. Comput. Sci. 6(2) (2004) 365.
[33] D. Zeilberger, The method of creative telescoping, Journal of Symbolic Computation 11 (1991) 195.

[^0]: ${ }^{2}$ The low- N version of this relation was pointed out to us by J. Gracey in a private

