Z-boson decay at the NNNLO level

Krzysztof Grzanka

Institute of Physics University of Silesia

with: Janusz Gluza, Ayres Freitas, levgen Dubovyk, Martijn Hidding, Johann Usovitsch

Based on: DOI:10.3390/sym13060975, DOI:10.23731/CYRM-2019-003

Zagreb, 16 July 2021

Outline

- 1. Introduction
- 2. Motivation
- 3. The task
- 4. Numerical calculations Methods and tools
- 5. Examples of calculations
- 6. Summary and outlook

1. Introduction

Γ _i [MeV]	$\Gamma_e, \Gamma_\mu, \Gamma_\tau$	$\Gamma_{\nu_e}, \Gamma_{\nu_\mu}, \Gamma_{\nu_\tau}$	Γ_d, Γ_s	Γ_u, Γ_c	Гь	Γ _Z
Born	81.142	160.096	371.141	292.445	369.56	2420.2
$\mathcal{O}(\alpha)$	2.273	6.174	9.717	5.799	3.857	60.22
$\mathcal{O}(\alpha \alpha_s)$	0.288	0.458	1.276	1.156	2.006	9.11
$\mathcal{O}(N_f^2 \alpha^2)$	0.244	0.416	0.698	0.528	0.694	5.13
$\mathcal{O}(N_f \alpha^2)$	0.120	0.185	0.493	0.494	0.144	3.04
$\mathcal{O}(\alpha_{\mathrm{bos}}^{2})$	0.017	0.019	0.058	0.057	0.167	0.505
$ \begin{array}{c} \mathcal{O}(\alpha_t \alpha_s^2, \alpha_t^3 \\ \alpha_t \alpha_s^3, \alpha_t^2 \alpha_s) \end{array} $	0.038	0.059	0.191	0.170	0.190	1.20

- 2016, estimation, bosonic NNLO $\sim 0 \pm 0.1$ MeV
- 2018, exact result: 0.505 MeV

1. Introduction

Euclidean results (constant part, $(p_1 + p_2)^2 = m_Z^2 = 1$):

Analytical :	-0.4966198306057021
MB(Vegas) :	-0.4969417442183914
MB(Cuhre) :	-0.4966198313219404
FIESTA :	-0.4966184488196595
SecDec :	-0.4966192150541896

Minkowskian results (constant part, $-(p_1 + p_2)^2 = m_Z^2 = 1$):

Krzysztof Grzanka

Z-boson decay at the NNNLO level

1. Introduction

Krzysztof Grzanka Z-boson decay at the NNNLO level Institute of Physics University of Silesia

2. Motivation

	$\delta \Gamma_Z [MeV]$	$\delta R_{l} [10^{-4}]$	$\delta R_b \ [10^{-5}]$	$\delta \sin^{2,l}_{eff} \theta \ [10^{-6}]$	
Present EWPO theoretical uncertainties					
EXP-2018	2.3	250	66	160	
TH-2018	0.4	60	10	45	
EWPO theoretical uncertainties when FCC-ee will start					
EXP-FCC-ee	0.1	10	2÷6	6	
TH-FCC-ee	0.07	7	3	7	

Table: Comparison for selected precision observables of present experimental measurements (EXP-2018), current theory errors (TH-2018), FCC-ee precision goals at the end of the Tera-Z run (EXP-FCC-ee) and rough estimates of the theory errors assuming that electroweak 3-loop corrections and the dominant 4-loop EW-QCD corrections $\mathcal{O}(\alpha\alpha_s^2), \mathcal{O}(N_f\alpha^2\alpha_s), \mathcal{O}(N_f^2\alpha^3)$ are available at the start of FCC-ee (TH-FCC-ee). Based on discussion in 1809.01830.

2. Motivation

Z-boson decay at the NNNLO level

Institute of Physics University of Silesia

3. The task

$Z \rightarrow b\overline{b}$					
Number of	1 loop	2 loops	3 loops		
topologies	1	5	50		
Number of diagrams	15	1114	120187		
Fermionic loops	0	150	17580		
Bosonic loops	15	964	102607		
QCD / EW	1 / 14	98 / 1016	10405 / 109782		

Table: The number of Z decay Feynman diagrams needed to be calculated to meet FCC-ee experimental accuracy. Tadpoles, products of lower loop diagrams and symmetrical diagrams are not included.

 $\mathcal{O}(10^3)$ Self-energy integrals to be calculated as a warm-up.

Automation, cross-checks and precision of calculations are crucial.

4. Numerical calculations - Methods and tools

- Sector Decomposition method
 - FIESTA
 - (py)SecDec
- Mellin-Barnes method
 - PlanarityTest
 - AMBRE
 - MB, MBresolve
 - MBnumerics
 - QMB (MB+quasiMC)

NNLO Z-pole SM completed: 10^{-8} accuracy achieved for most of Feynman integrals and at least 10^{-6} for the few worst integrals with one of the methods.

Numerical calculations - Methods and tools

Many groups present rapid progress:

- Analytical/numerical solutions for Master Integrals (MIs) by DEqs and uniform transcendentality (UT)
- Reductions at the integrand level
- Expansions: by regions; Taylor expansion in Feynman parameters (TayInt)
- NNNLO massive self-energies: TVID-2
- Loop-tree duality
- Four-dimensional unsubtraction

5. Examples of calculations - pySecDec

Number of points	Integrator	Result	Absolute error	
107	QMC	8.62988 <mark>528</mark>	4.99×10^{-6}	
10	Divonne	8.6299 <mark>5472</mark>	5.31×10^{-5}	
109	QMC	8.6298878517 <mark>237</mark>	3.72×10^{-11}	
10	Divonne	8.62989 <mark>44179328</mark>	2.56×10^{-6}	

Table: Comparison of Quasi-Monte Carlo and Divonne integrators for calculation in Euclidean point $(M_Z^2 = 1 = -s)$.

5. Examples of calculations - pySecDec

• Minkowskian kinematics $(M_Z^2 = 1 = s)$, below threshold

5. Examples of calculations - pySecDec

• Minkowskian kinematics $(M_Z^2 = 1 = s)$, above threshold

 $-1.97790 - 3.17070 \cdot i \pm (0.00070 + 0.00056 \cdot i).$

Krzysztof Grzanka Z-boson decay at the NNNLO level Institute of Physics University of Silesia

5. Examples of calculations - MB

• Minkowskian kinematics $(M_Z^2 = 1 = s)$, above threshold

Method	Result	Absolute error
MBnumerics	-18.7794069 <mark>62</mark> -6.390785027 i	10 ⁻⁹ + 10 ⁻⁹ i
pySecDec	-18.787167067-6.384327811 i	0.00 <mark>93</mark> +0.00 <mark>97</mark> i

Krzysztof Grzanka

Institute of Physics University of Silesia

14/17

Z-boson decay at the NNNLO level

5. Examples of calculations - DEqs

• Minkowskian kinematics $(M_Z^2 = 1 = s)$, above threshold

 $I_{DEqs} = -(0. - 19.126230298813844 \cdot I)$

 $I_{pySecDec} = 0.460 - 19.164 \cdot I \pm (0.298 + 0.281 \cdot I)$

for more details see the following talk by M. Hidding

Institute of Physics University of Silesia

6. Summary and outlook

- Enormous task to be done
- Automation
- Testing and development of methods and tools
- Cross-checks
- Promising view for the future

Thank You for your attention

Krzysztof Grzanka Z-boson decay at the NNNLO level Institute of Physics University of Silesia