

FCC-ee: Upstream & Downstream Corrections

Jana Faltová¹, <u>Juraj Smieško</u>^{1,2} Noble Liquid Calorimetry for Future Accelerator Experiments, CERN April 15, 2021

¹Charles University, Czechia
²Slovak Academy of Sciences, Slovakia

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

LAr Calorimeter FCC-hh vs. FCC-ee

- Going from FCC-hh calorimeter to FCC-ee:
 - Loss of 15 cm in barrel thickness
 - Current thickness: $\sim 22X_0$ at $\theta = \pi/2$
- Geometry on the right used for FCC-ee calculations

FCC-ee: Energy deposits outside calorimeter I.

- Energy is deposited also outside calorimeter, most notably in front and back cryostat
- There is correlation between first calorimeter layer and energy deposited in front cryostat
- Similarly, there is correlation between last calorimeter layer and energy deposited in back cryostat
- Energy deposited in side cryostats negligible (< 0.003 GeV for e^- , 100 GeV, $\theta = \pi/2$)
- Those correlations are exploited to create upstream and downstream energy corrections
- This presentation:
 - Corrections derived for 12 layer version of FCC-ee LAr Calorimeter (Merged Brieuc's branch) (Code was not yet transfered to FCCDetectors repository)
 - Back cryostat extended to 1100 mm

FCC-ee: Energy deposits outside calorimeter II.

FCC-ee: Energy deposits outside calorimeter III.

FCC-ee, e^- , 100 GeV , $\theta = 70^\circ$

FCC-ee: Energy deposits outside calorimeter IV.

FCC-ee, e^- , 240 GeV , $\theta = 70^\circ$

FCC-ee: Energy deposits outside calorimeter V.

FCC-ee, e^- , 20 GeV, $\theta = 70^\circ$

FCC-ee: Energy deposits outside calorimeter VI.

FCC-ee: Energy deposits outside calorimeter VII.

FCC-ee: Upstream Energy vs. First Layer

Cluster energy dependence

FCC-ee: Upstream Energy vs. First Layer

Cluster angle dependence

FCC-ee: Downstream Energy vs. First Layer

Cluster energy dependence

Cluster angle slice: 70 $^\circ$

Cluster angle dependence

FCC-ee Upstream Correction Energy Dependence

14/21

FCC-ee Downstream Correction Energy Dependence

FCC-ee: Energy correction test I.

FCC-ee, e^- , 10 GeV, $\theta = 70 \text{ deg}$ FCC-ee, e^- , 30 GeV, $\theta = 70 \text{ deg}$ Number of events Number of events $E_{calo} = 9.87 \pm 0.25 \text{ GeV}, \ \frac{\sigma}{F} = 2.51 \ \%$ $E_{calo} = 29.20 \pm 0.52 \text{ GeV}, \ \frac{\sigma}{E} = 1.77 \ \%$ 4500 2500 $E_{calo+cryo} = 10.10 \pm 0.22 \text{ GeV}, \ \frac{\sigma}{E} = 2.17 \ \%$ $E_{calo+crvo} = 30.04 \pm 0.38 \text{ GeV}, \ \frac{\sigma}{E} = 1.26 \ \%$ 4000 $E_{calo+corr} = 10.08 \pm 0.24 \text{ GeV}, \ \frac{\sigma}{E} = 2.35 \ \%$ $E_{calo+corr} = 29.96 \pm 0.44 \text{ GeV}, \ \frac{\sigma}{E} = 1.47 \ \%$ 3500 2000 FCC-ee, LAr Calo (12 layers) FCC-ee, LAr Calo (12 layers) 3000 _____ e⁻. 30 GeV. 70 dea e⁻, 10 GeV, 70 deg 1500 2500 2000 1000 1500 1000 500 500 0 8.5 9.5 10 29 30 9 10.5 34 25 26 28 31 27 E [GeV]

FCC-ee: Energy correction test II.

FCC-ee: Energy correction test III.

FCC-ee: Energy correction test IV.

FCC-ee: Energy correction test V.

Conclusion and Plans

- For FCC-ee large energy leakage observed
- Correlation between first/last layer and back cryostat exploited to create up/downstream corrections
- Upstream energy vs. energy in first layer linear
- Downstream energy vs. energy in last layer quadratic
- Parametrization can use any basic 1D/2D ROOT function
- Energy correction reconstructs cluster energy in whole energy and theta range
- Inclusion of cluster theta dependence needed
- Links:
 - calo_corr: https://github.com/kjvbrt/FCCSW/tree/calo_corr
 - Correction lives in: Detector/DetStudies/scripts
 - calo_corr_12: https://github.com/kjvbrt/FCCSW/tree/calo_corr_12