Vertex resolution in B_s^0 decays under different IDEA Delphes configurations

Donal Hill, with thanks to Clement Helsens and Emmanuel Francois Perez 19/4/21

FCC-ee Physics Performance meeting

Introduction

- Use k4SimDelphes with EvtGen to generate:
 - 10k $B_s^0 o (J/\psi o \mu^+\mu^-)(\phi o K^+K^-)$ decays
 - 5k $B_s^0 o (D_s^- o K^- K^+ \pi^-) K^+$ decays
- Analyse output using VertexExamples code in HEP-FCC/FCCeePhysicsPerformance repo to run vertex fits
- Full covariance matrices for the inputs used in vertex fits
 - In $B_s^0 o D_s^- K^+$, vertex fit performed to D_s^- first and full information on D_s^- pseudo-track passed to the B_s^0 vertex fit
- Aim: study the vertex resolution as a function of several detector parameters in IDEA Delphes, using independent samples generated with different cards

1

Delphes parameters varied

Parameter	Range considered [default]
r_1 of first vtx. layer [mm]	4 – 17 [17]
r_2 of second vtx. layer [mm]	$6-23$ [23], $r_1 = 4$ mm
Beam pipe thickness $[\% \ X_0]$	0.34 (CLD), 0.48 (CDR), 0.59 (MDI) [0.34]
Single hit resolution $[\mu m]$	1 – 10 [3]
Inner 3 vtx. layer thickness $[\mu m]$	50 – 500 [280]
Inner 3 vtx. layer X_0	0.02 – 0.2 [0.0937]

Assessing the resolution

- Run vertex fits on MC samples generated using different Delphes cards, where parameters of interest are varied away from the IDEA default
- Vertex fits measure (x,y,z) coordinate of B^0_s decay vertex calculate $r=\sqrt{x^2+y^2+z^2}$
- Compare r with the MC-truth r_T , and fit $\delta = r r_T$ with a double-Gaussian PDF
 - · Gaussians share a mean and have independent widths, σ_1 and σ_2
- Vertex resolution given by $\sigma = f_1\sigma_1 + (1 f_1)\sigma_2$, where f_1 is the fraction of the first Gaussian which freely varies in each fit

Example fits

- · Varying radial distance of first vertex detector layer
- Show $B_s^0 \to J/\psi \phi$ decays in central region, $|\cos(\theta)| \le 0.5$
 - \cdot θ is the angle of the true B_s^0 direction relative to the beam axis

Radial distance (r_1) of first vertex layer [default = 17]

• More central B's are shown in red, and more forward B's in blue (defined according to $\cos(\theta)$ values)

r_2 of second vertex layer [default = 23], r_1 = 4 mm

 Vary second vertex layer radial distance, maintaining first layer radius at 4 mm

Beam pipe thickness [default = 0.34]

 Some dependence on beam pipe - a test point run with very large thickness verifies that degradation is occurring

Aside: CDR beam pipe design

- CDR design features like 15 mm separation from beam line and beryllium thickness of 12 mm are used in default Delphes
- Perhaps it is possible to add the gold layer (control synchrotron radiation) and water (cooling) to Delphes?

Image credit: Nicola Bacchetta

Single hit resolution [default = 3]

Inner 3 vertex layer thickness [default = 280]

Inner 3 vertex layer X_0 [default = 0.0937]

Summary

- Vertex precision better for more central B 's difference larger for $B_s^0 \to J/\psi \phi$
- Trends observed when each of the Delphes parameters are varied - general trend directions make sense
- Need to study limiting precision of the vertexing look at performance with all parameters set to best-case values
 - e.g. why is the best resolution 8 μ m with a 4 mm first layer r?
- Vertex resolution key for flavour, and ${\cal B}^0_s$ modes in particular feeds directly into flight distance resolution and thus lifetime resolution
 - Excellent lifetime resolution needed in order to resolve mixing $(\Delta m_s = 17.7656 \pm 0.0057~{\rm ps}^{-1}~{\rm from~LHCb-PAPER-2021-005})$
 - · In this measurement, lifetime resolution was 47 fs

Vertex resolution - a key performance metric

• Measurement of Δm_s in $B_s^0 \to D_s^- \pi^+$ decays [LHCb-PAPER-2021-005]

Vertex resolution - a key performance metric

• $B_s^0 \to D_s^- \pi^+$ decay length (*l*) resolution in LHCb simulation is $\sim 160 \ \mu \text{m}$ (without any fancy decay tree fitting)

• Proper time $t=l\times \frac{m}{p}$, so lifetime resolution of 47 fs relies on good l and p resolution

- Vertex resolutions shown today compare favourably to LHCb performance
 - \cdot We must understand how to achieve the best possible performance, to achieve superb t resolution