

$$\mathsf{Bc} \rightarrow \tau \nu \ (\tau \rightarrow 3\pi \nu)$$

FCC Physics and Performance meeting

April 19, 2021 C Helsens, D Hill CERN-EP EPFL

Context

To make progress with the Bc analysis needed a lot of ingredients

- <u>Monte-Carlo</u>
 - Production of exclusive decay modes for signal Bc and background Bu
 - New k4SimDelphes Pythia+EVTGEN interface developed and validated
 - Production of large background samples (3 billions of $Z \rightarrow qq$, q=uds,c,b)
 - Where exclusive decay modes are removed from Z+bb
 - Dedicated production for MVA training (0.7 billion events)

FCCAnalyses

- Allow preprocessing of very large amount of data with complex code with HTCondor
- Vertexing from MC perfect seeding
- Particle Identification (perfect PID assumed here)
- Implemented Combination from awkward C++ (triggered awkward to RDF interest)
- Developed a lot of code (tau candidate building, analysis utilities...)

Vertexing

Context

Developed perfect seeding vertex finder

- Procedure:
 - Finds MC vertex with stable charged particles
 - Run vertex fitting using reconstructed tracks associated to the MC ones (if at least 2 tracks found at reco level)
- This is the best vertexing we could dream of as
 - We perfectly seed the vertex fitter
 - We have extremely good displaced vertex reconstruction efficiency
 - But it still takes into account acceptance effect and vertex fit quality
- Possible improvements to make it more realistic would be to
 - merge close by vertex
- Next slides shows some vertexing performance plots

Number of vertex - 1

FCC Physics and Performance meeting, April 2021

Number of vertex - 2

Number of vertex - 3

FCC Physics and Performance meeting, April 2021

Primary Vertex

Number of tracks PV

Distance to MC vertex

Pull vertex

Secondary Vertex

Number of tracks SV

FCC Physics and Performance meeting, April 2021

Number reco SV

FCC Physics and Performance meeting, April 2021

Number SV per track multiplicity

Distance to MC vertex - N tracks = 3

Vertex pull - N tracks = 3

Vertex migration

Flight distance - N tracks = 3

Flight distance significance - N tracks = 3

In backup plots for other track multiplicities

PV is included here, need to redo the plots after the meeting

Flight distance significance - N tracks = 3

In backup plots for other track multiplicities

Minimum distance PV-DV DV-DV

$\mathsf{Bc} \twoheadrightarrow \tau \ \nu \ (\tau \twoheadrightarrow 3\pi \ \nu)$

Motivation

Leptonic decay of Bc meson - in SM, annihilation of quarks to produce a W

Rate is sensitive to CKM factor IVcbl, but also to NP Wilson coefficients

Complementary to b \rightarrow c τ v modes, since it involves the same vertex factors

- These modes show deviations compared to SM e.g. R(D), R(D*)

Decay is not yet observed: not possible to reconstruct at LHC due to missing energy, and no Bc produced at B factories

Aim to study feasibility of a branching fraction measurement at FCC-ee Z-pole

Existing studies from CEPC

Feasibility study of Bc $\rightarrow \tau v (\tau \rightarrow l v v)$ at CEPC [arXiv:2007.08234]

Exploits missing energy of signal and hemisphere structure of $Z \rightarrow$ bb events, using the thrust axis to define hemispheres

No decay vertices reconstructed, so they rely on information from a single electron or muon candidate (like IP to the thrust axis)

Focus on separating signal from $Z \Rightarrow qq$, cc, bb via MVAs, but also on separating signal from the very similar $B+ \Rightarrow \tau v$ mode

- B+ mode is CKM suppressed compared to signal (IVubl vs. IVcbl), but the production rate is 1000x larger
- Leads to N(Bc) / N(B+) = 0.28 ± 0.05 expected in SM

Our approach

Use the $\tau \rightarrow 3\pi \nu$ decay (9% branching ratio) to provide a reconstructible τ vertex

Allows a **precise measure of the combined (Bc +** τ **) flight**, which can distinguish the signal from B+ $\rightarrow \tau v$ since the B+ lifetime is 3x larger

Use an MVA trained on event-level information to suppress $Z \rightarrow qq$, cc, bb

Use $\tau \rightarrow 3\pi$ decay in signal MC to study vertexing performance - use the reconstructed 3π information to derive a full signal selection

Study the signal purity achievable, and the possible precision of a branching fraction measurement at FCC-ee

Analysis description

Same (or similar) analysis flow can be applied to other case studies

3π mass plot (no cuts)

To validate the candidates reconstruction. Everything is doing well

Stage 1 MVA: reject inclusive background

Use hemisphere energy information calculated in FCCAnalyses, based on thrust axis determination (also done in FCCAnalyses)

Train xgboost binary classifier on Bc \rightarrow ($\tau \rightarrow 3\pi v$) v and a mixed sample of inclusive decays Z \rightarrow qq, cc, bb (combined according to Z branching fractions and pre-sel eff)

Require a PV and also at least one reconstructed 3π candidate as a pre-selection, which reduces Z → qq (100x) / cc (10x) / bb (3x)

Model training is done in Python, but the trained model is persisted to ROOT file and applied to samples via RDataFrame in FCCAnalyses (cutting edge in ROOT!)

TMVA::Experimental::RBDT<> bdt("Bc2TauNu_BDT", "/eos/experiment/fcc/ee/analyses/case-studies/flavour/Bc2TauNu/xgb_bdt_vtx.root"); computeModel = TMVA::Experimental::Compute<18, float>(bdt);

Stage 1 MVA: reject inclusive background

High performance on all classes of background, but $Z \Rightarrow$ bb found to be most signal-like (makes sense since $b \Rightarrow c \Rightarrow$ s produces more missing energy)

Signal looks similar to $B+ \rightarrow (\tau \rightarrow 3\pi v) v$, which is a prominent background

Alternative MVA with additional vertex variables

Also trained the MVA including information on number of reconstructed vertices, number of 3π candidates, PV track multiplicity, and 3π vertex separations from PV

Better performance, and $B+ \rightarrow \tau v$ rejected more due to use of vertex distance info

- We proceed to use this MVA, with a BDT > 0.6 pre-cut (90% signal-efficient)

Pre-selection efficiency

Cumulative efficiencies

Cut/Process	Bc→τv	Bu→τν	Z→bb	Z→cc	Z→uds
Has PV	0.898	0.984	0.982	0.998	0.9998
N tau cand>0	0.777	0.861	0.316	0.112	0.00332
1 st MVA>0.6	0.688	0.590	0.0288	0.00234	8.35e-05

After pre-selection and considering 150 ab⁻¹, the following yields are expected:

N(Bc \rightarrow **tv**, **t** \rightarrow 3 π **v**) N(Bu \rightarrow **tv**, **t** \rightarrow 3 π **v**) N(Z \rightarrow bb) N(Z \rightarrow cc) N(Z \rightarrow uds)

1 205 000 events 5 133 000 events 28 627 500 000 events (28 10⁶ MC events left out of 10⁹) 1 827 800 000 events (2.3 10⁶ MC events left out of 10⁹) 233 200 000 events (8.4 10⁴ MC events left out 10⁹)

3π candidate selection - 1

- Select candidates with:
 - $m(3\pi) > 0.6 \text{ GeV}$ and < 1.8 GeV
 - Vertex chi2 > 0 and < 10
 - If several candidates, chose smallest chi2

Non truth-matched 3π are candidates built in signal events which do not come from the signal τ

e.g. a charm meson decay from the non-signal hemisphere

3π candidate selection - 2

- Select candidates with:
 - $m(3\pi) > 0.6 \text{ GeV}$ and < 1.8 GeV
 - Vertex chi2 > 0 and < 10
 - If several candidates, chose smallest chi2
 - Candidate in minimum E hemisphere

Non truth-matched 3π are candidates built in signal events which do not come from the signal τ

e.g. a charm meson decay from the non-signal hemisphere

Rate is decreased by requiring the 3π to reside in minimum energy hemisphere

3π candidate selection - 3

Select candidates with a cut on $m(\pi\pi)$ mass:

- At truth level in signal, L-shape seen
- Characteristic of the $\tau \rightarrow 3\pi \nu$ decay
- m(ππ) > 0.6 GeV and < 1GeV
- Select an L shape around signal
- Reject lower box and outer region

3π candidate selection - 3

Select candidates with a cut on $m(\pi\pi)$ mass:

- At truth level in signal, L-shape seen
- Characteristic of the $\tau \rightarrow 3\pi \nu$ decay
- $m(\pi\pi) > 0.6 \text{ GeV} and < 1 \text{GeV}$
- Select an L shape around signal
- Reject lower box and outer region

3π candidate selection - summary

Efficiency cumulative and wrt to last stage 1 cut

Cut for candidate selection	Efficiency Bc→τν	Purity Bc→τν
0.6 <mass<1.8gev 0<chi2<10< th=""><th>0.983</th><th>0.875</th></chi2<10<></mass<1.8gev 	0.983	0.875
Candidate in thrust hemisphere with less energy	0.815	0.971
(m1(ππ)<1 && m2(ππ)>0.6 && m2(ππ)<1 GeV) OR (m2(ππ)<1 && m1(ππ)>0.6 && m1(ππ)<1 GeV)	0.758	0.980

Second-stage MVA at 3π candidate level

After best candidate selection per-event, train a second MVA with 3π candidate information such as flight distance, m(3π), m($\pi\pi$), momentum, vertex chi2

Use truth-matched signal and a combined background sample of $Z \Rightarrow qq$, cc, bb passing all previous cuts (relative sizes set by branching ratios and efficiencies)

MVAs orthogonality

Bu -> tau nu U.95 1000 0.9 8000 0.85 6000 0.8 0.75 4000 0.7 2000 0.65 0.6 0.2 0.8 0 0.4 0.6 1 EVT_MVA2 Z->bb inclusive VM 1 0.95 1800 1600 0.9 1400 0.85 1200 0.8 1000 8000 0.75 6000 0.7 4000 0.65 2000 0.6 0.2 0 0.4 0.8 0.6 1 EVT_MVA2

Tight MVAs selection - 1

42

Tight MVAs selection - 2

Other variables to investigate

- Displaced vertex requirements in non-signal hemisphere
 - Require high flight and mass consistent with a B-hadron
 - Would retain events more consistent with Z > bb
- Candidate angles with respect to thrust axis
 - 3π produced from tertiary vertex, so τ flight direction is not along thrust axis
 - 3π produced directly in B decays will align well with thrust axis
 - e.g. charmless $B+ \Rightarrow 3\pi$, large branching ratio $B \Rightarrow D 3\pi$ decays
- Presence of a vertex consistent with charm in the signal hemisphere
 - Bc contains charm quark, so the other charm quark will produce a charm hadron
 - Look for another displaced vertex consistent with charm flight and mass
 - $c \Rightarrow$ s preferentially, so look for displaced kaons (both charged track and Ks $\Rightarrow \pi\pi$)

Summary

- Close to final analysis flow presented today
 - Perfect PID assumed
 - Perfect vertex seeding assumed
 - \circ Achieved an excellent signal purity selection enough signal for a \square 5% yield stat. uncertainty

• Next steps

- Validate the perfect vertex seeding with a procedure that is already in place but not used here
 - Fit any vertex with 3 pions (perfect PID, combinatoric with awkward C++and) choose the best chi2 (as done actually). Should find very similar performances
- Generate more MC (with official production, BES, etc)
- Study more discriminating variables
- Study impact of non perfect PID
- Extract Bc branching fraction
- Start to draft a paper

Backup

Truth level kinematic leading pion energy

3

3.5 Leading pion energy θ

47

Truth level kinematic sub leading pion energy

 $Z \rightarrow b\overline{b}, Bc \rightarrow \tau v, \tau \rightarrow 3\pi$

Truth level kinematic sub leading pion energy

Truth level kinematic leading neutrino energy

 $Z \rightarrow b\overline{b}$, Bc $\rightarrow \tau v$, $\tau \rightarrow 3\pi$

Truth level kinematic sub-leading neutrino energy

Angular separation between 3 pi reco level

52

Vertex pull - N tracks = 2

Vertex pull - N tracks = 3

Vertex pull - N tracks = 4

Vertex pull - N tracks = 5

Vertex pull - N tracks = 6

Flight distance - N tracks = 2

Flight distance - N tracks = 3

Flight distance - N tracks = 4

Flight distance - N tracks = 5

Flight distance - N tracks = 6

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0.018

0.016

0.014

0.012

0.01

0.006

0.004

0.002

-50

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

