Beyond the Standard Model = Into the Unknown

Known knowns Known unknowns Unknown unknowns

John Ellis

The Standard Model & its Current Status

Why the Higgs boson? What can the Higgs boson tell us? Looking beyond it

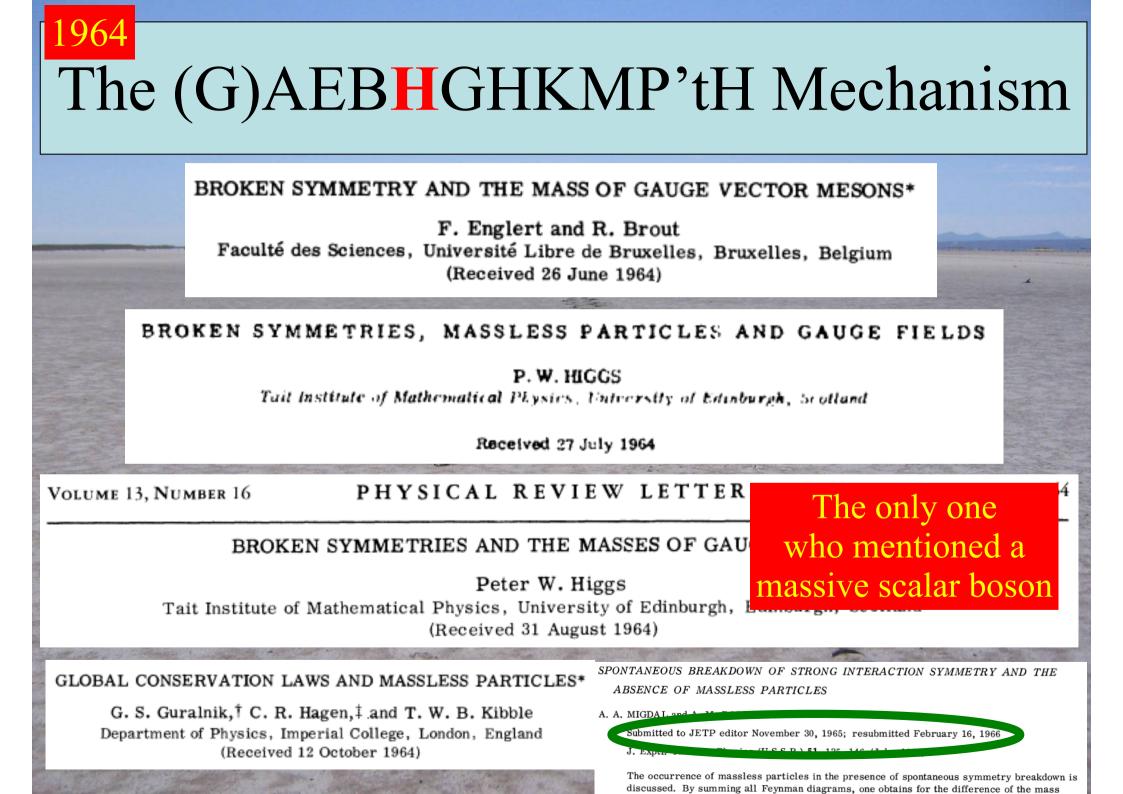
Fundamental Particle Interactions

- Strong, weak and electromagnetic
- Three separate gauge group factors:
 SU(3) × SU(2) × U(1)
- Three different gauge couplings:
 g₃, g₂, g[']
- Similar structures, important difference
- The carrier particles of the weak interactions are massive: $m_W \sim 80$ GeV, $m_Z \sim 91$ GeV
- What is the origin of these masses (also electron, ...)

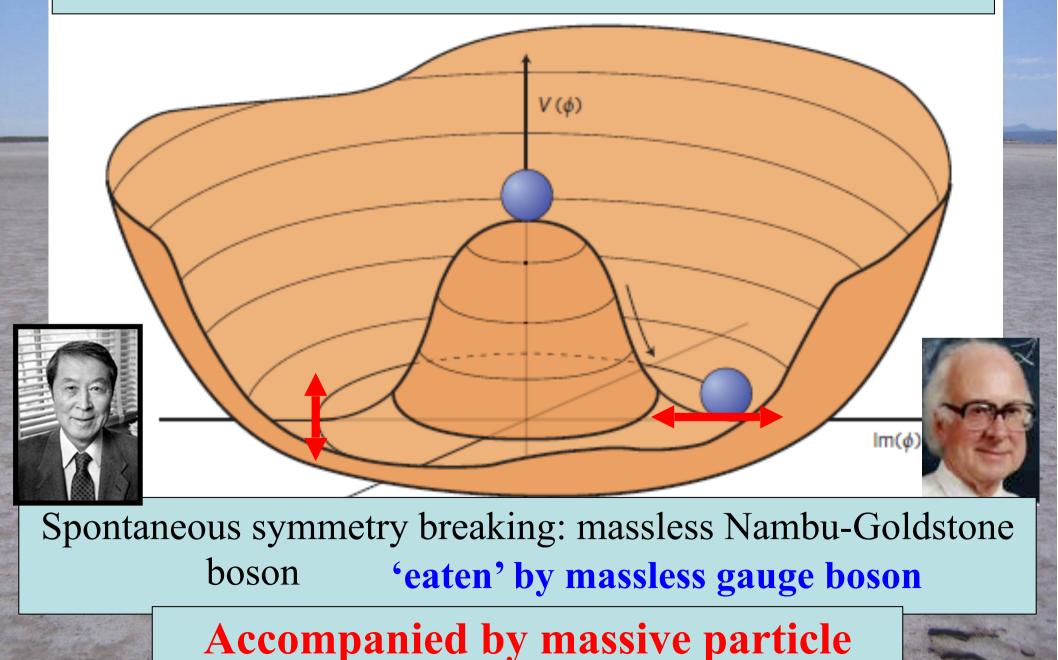
Is the Higgs Boson the answer?

To Higgs or not to Higgs?

- Need to discriminate between different types of particles:
 - Some have masses, some do not
 - Masses of different particles are different
- In mathematical jargon, symmetry must be broken: how?
 - Break symmetry in equations? Inconsistencies ...
 - Or in solutions to symmetric equations?
- Latter is the route proposed by Higgs (et al.)
 Is there any other way?


Where to Break the Symmetry?

- Throughout all space?
 - Route proposed by Higgs et al
 - Universal scalar field breaks symmetry
- Or at the edge of space?
 Break symmetry at the boundary?
- Not possible in 3-dimensional space
 - No boundaries
 - Postulate extra dimensions of space
- Different particles behave differently in the extra dimension(s)


The Founding Fathers

1964

Nambu, EB, H, GHK & Higgs

The Nambu-Goldstone Mechanism

• Postulated effective scalar potential:

$$V[\phi] = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

• Minimum energy at non-zero value:

$$\phi_0 = <0|\phi|0> = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ +v \end{pmatrix} v = \sqrt{\frac{-\mu^2}{\lambda}}$$

- Components of scalar field: $\phi(x) = \frac{1}{\sqrt{2}}(v + \sigma(x))e^{i\pi(x)}$
- π massless, σ massive:

$$m_H^2 = 2\mu^2 = 2\lambda v$$

Abelian EBH Mechanism

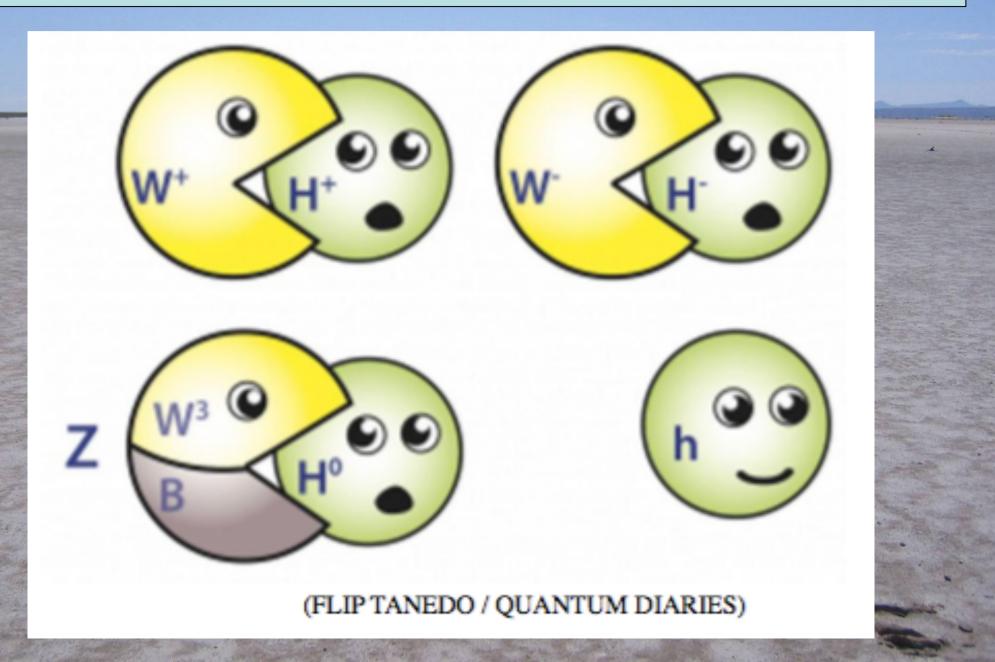
• Lagrangian

$$\mathcal{L} = \left(D_{\mu}\phi\right)^{+} \left(D^{\mu}\phi\right) - V(|\phi|) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}, \quad D_{\mu} = \partial_{\mu} - ieA_{\mu\nu}$$

• Gauge transformation $\phi'(x) = e^{i\alpha(x)} \phi(x) = e^{i\alpha(x)} e^{i\theta(x)} \eta(x)$

$$A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{e}\partial_{\mu}\alpha(x)$$

- Choose $\alpha(x) = -\theta(x)$: $\phi'(x) = \eta(x)$
- Rewrite Lagrangian: $\mathcal{L} = |(\partial ieA'_{\mu})\eta|^2 V(\eta) \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu}$


$$\mathcal{L} = |(\partial_{\mu} - ieA'_{\mu})(\mathbf{v} + \frac{1}{\sqrt{2}}H)|^2 - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - V$$


$$= \underbrace{-\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + v^{2}e^{2}A'_{\mu}A'^{\mu}}_{2} + \underbrace{\frac{1}{2}[(\partial_{\mu}H)^{2} - m_{H}^{2}H^{2}]}_{2} + \cdots$$

massive A-field, $m_A \sim ev$

neutral scalar, $m_H \neq 0$

Parameters of the Standard Model

- Gauge sector:
 - -3 gauge couplings: g_3 , g_2 , g_3
 - 1 strong CP-violating phase
- Yukawa interactions:
 - 3 charged-lepton masses
 - 6 quark masses
 - 4 CKM angles and phase
- Higgs sector:
 - -2 parameters: μ , λ
- Total: 19 parameters

Unification?

Flavour?

Where are we?

Summary of the Standard Model

• Particles and $SU(3) \times SU(2) \times U(1)$ quantum numbers:

L_L E_R	$ \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \\ e_R^-, \mu_R^-, \tau_R^- \end{pmatrix} $	(1,2 ,-1) (1,1 ,-2)	
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$	

• Lagrangian:

ngian: $\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{a\ \mu\nu}$ gauge interactionsTested < 0.1%</th> $+ i\bar{\psi}$ / $D\psi + h.c.$ matter fermionsbefore LHC $+ \psi_i y_{ij} \psi_j \phi + h.c.$ Yukawa interactionsTesting now $+ |D_\mu \phi|^2 - V(\phi)$ Higgs potentialTesting now

The Standard Model Lagrangian

$$\mathcal{L}_{SM} = \mathcal{L}_m + \mathcal{L}_g + \mathcal{L}_h + \mathcal{L}_y$$

$$\begin{split} \mathcal{L}_{m} &= \bar{Q}_{L} i \gamma^{\mu} D_{\mu}^{L} Q_{L} + \bar{q}_{R} i \gamma^{\mu} D_{\mu}^{R} q_{R} + \bar{L}_{L} i \gamma^{\mu} D_{\mu}^{L} L_{L} + \bar{l}_{R} i \gamma^{\mu} D_{\mu}^{R} l_{R} \\ \mathcal{L}_{G} &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W_{\mu\nu}^{a} W^{a\mu\nu} \checkmark \text{Experiment: accuracy} < \% \\ \mathcal{L}_{H} &= (D_{\mu}^{L} \phi)^{\dagger} (D^{L\mu} \phi) - V(\phi) \\ \mathcal{L}_{Y} &= y_{d} \bar{Q}_{L} \phi q_{R}^{d} + y_{u} \bar{Q}_{L} \phi^{c} q_{R}^{u} + y_{L} \bar{L}_{L} \phi l_{R} + \underbrace{\text{No direct evidence until July 4, 2012}}_{T} \\ D_{\mu}^{L} &= \partial_{\mu} - i g W_{\mu}^{a} T^{a} - i Y g' B_{\mu} \quad , \quad D_{\mu}^{R} &= \partial_{\mu} - i Y g' B_{\mu} \\ V(\phi) &= -\mu^{2} \phi^{2} + \lambda \phi^{4} \quad . \end{split}$$

Masses for SM Gauge Bosons

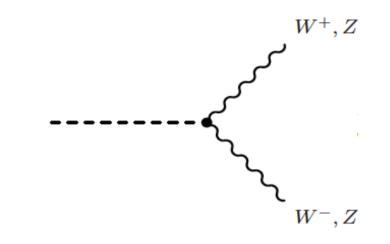
• Kinetic terms for SU(2) and U(1) gauge bosons:

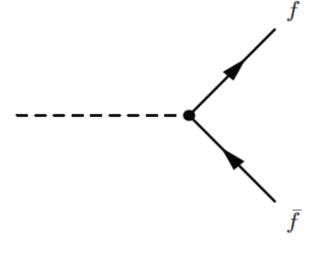
$$\mathcal{L} = -\frac{1}{4} G^{i}_{\mu\nu} G^{i\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

where $G^i_{\mu\nu} \equiv \partial_\mu W^i_\nu - \partial_\nu W^i_\mu + ig\epsilon_{ijk}W^j_\mu W^k_\nu$ $F_{\mu\nu} \equiv \partial_\mu W^i_\nu - \partial_\nu W^i_\mu$

• Kinetic term for Higgs field:

$$\mathcal{L}_{\phi} = -|D_{\mu}\phi|^2 \quad D_{\mu} \equiv \partial_{\mu} - i \ g \ \sigma_i \ W^i_{\mu} - i \ g' \ Y \ B_{\mu}$$


• Expanding around vacuum: $\phi = < 0|\phi|0 > +\hat{\phi}$


$$\mathcal{L}_{\phi} \ni -\frac{g^2 v^2}{2} \ W_{\mu}^+ \ W^{\mu-} \Rightarrow q^{\prime 2} \ \frac{v^2}{2} \ B_{\mu} \ B^{\mu} + g \ g^{\prime} v^2 \ B_{\mu} \ W^{\mu3} - g^2 \ \frac{v^2}{2} \ W_{\mu}^3 \ W^{\mu3}$$

• Boson masses:


$$m_{W^{\pm}} = \frac{gv}{2} \qquad Z_{\mu} = \frac{gW_{\mu}^3 - g'B_{\mu}}{\sqrt{g^2 + g'^2}} : \quad m_Z = \frac{1}{2}\sqrt{g^2 + g'^2}v ; \quad A_{\mu} = \frac{g'W_{\mu}^3 + gB_{\mu}}{\sqrt{g^2 + g'^2}} : \quad m_A = 0$$

Higgs Boson Couplings

 $g_2 M_W, \quad g_2 \frac{M_Z}{c_W}$

 $\Gamma(H \to f\bar{f}) = N_c \frac{G_F M_H}{4\pi\sqrt{2}} m_f^2, \quad N_C = 3(1) \text{ for quarks (leptons)}$

$$\Gamma(H \to VV) = \frac{G_F M_H^3}{8\pi\sqrt{2}} F(r) \left(\frac{1}{2}\right)_Z, \quad r = \frac{M_V}{M_H}$$

A Phenomenological Profile of the Higgs Boson

• First attempt at systematic survey

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

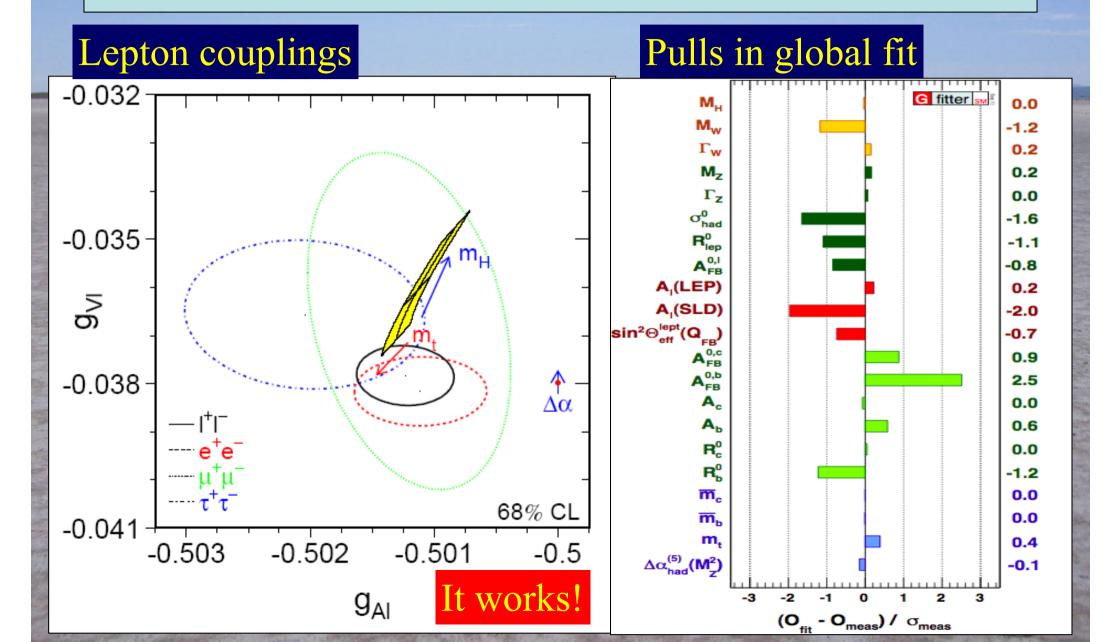
1975

A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as the Weinberg-Salam model. After reviewing previous experimental limits on the mass of

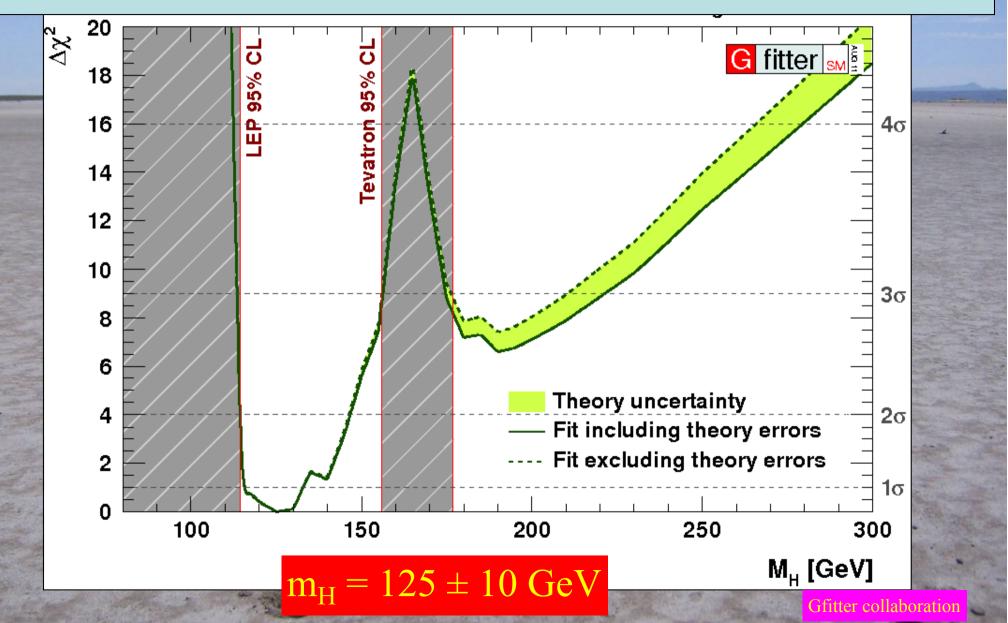
We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

Status of the Standard Model before the LHC

- Perfect agreement with all *confirmed* accelerator data
- Consistency with precision electroweak data (LEP et al) *only if there is a Higgs boson*
- Agreement seems to require *a relatively light Higgs boson* weighing < ~ 180 GeV
- Raises many unanswered questions: *mass? flavour? unification?*

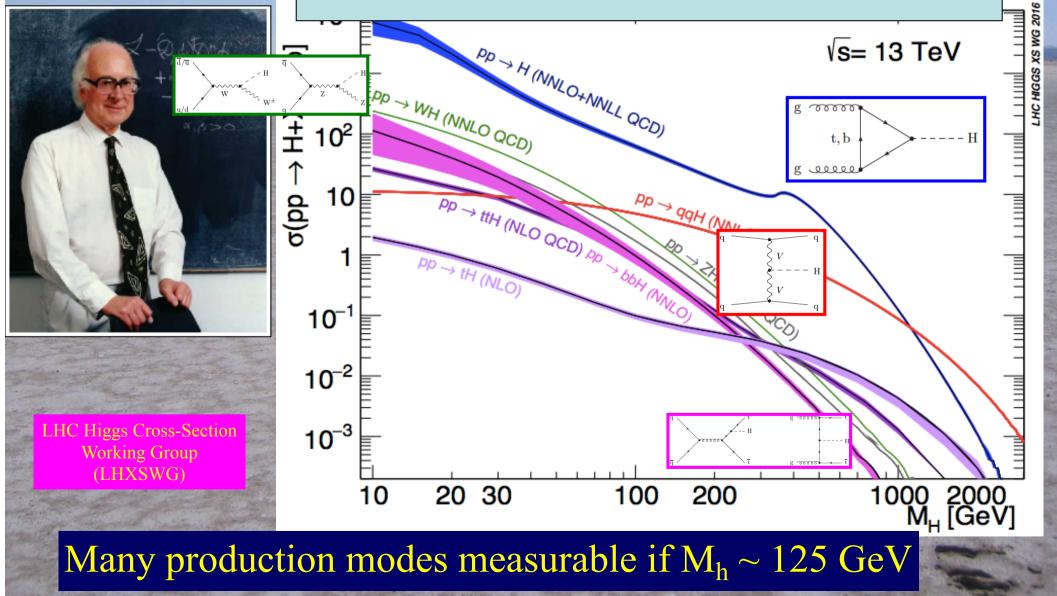

Constraints on Higgs Mass

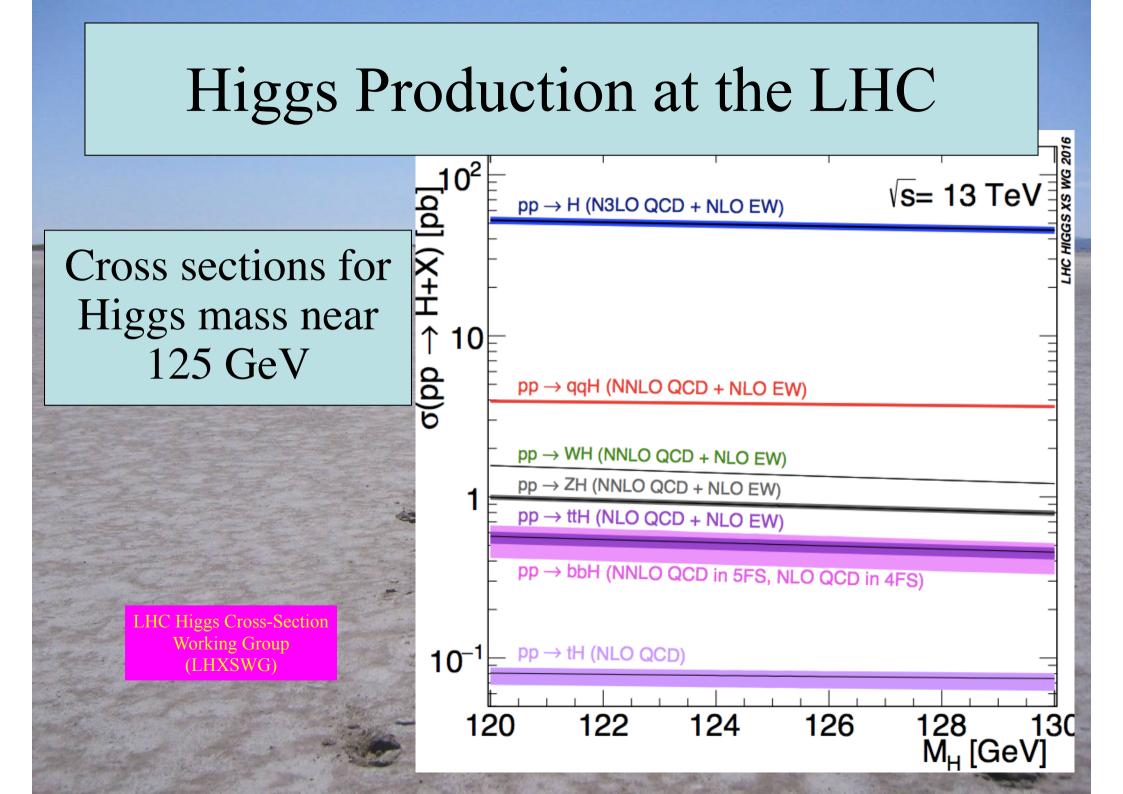
• Electroweak observables sensitive via quantum loop corrections: $m_W^2 \sin^2 \theta_W = m_Z^2 \cos^2 \theta_W \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_E} (1 + \Delta r)$


$$\frac{3G_F}{8\pi^2\sqrt{2}}m_t^2 = \frac{\sqrt{2}G_F}{16\pi^2}m_W^2(\frac{11}{3}\ln\frac{M_H^2}{m_Z^2} + \dots), M_H >> m_W$$

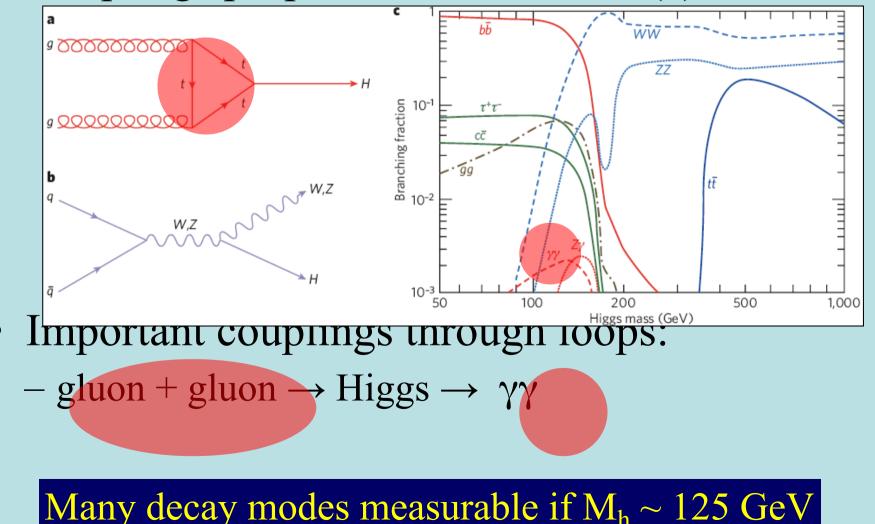
- Preferred Higgs mass: $m_H \sim 100 \pm 30 \text{ GeV}$
- Compare with lower limit from direct search at LEP: m_H > 114 GeV and exclusion around (160, 170 GeV) at TeVatron

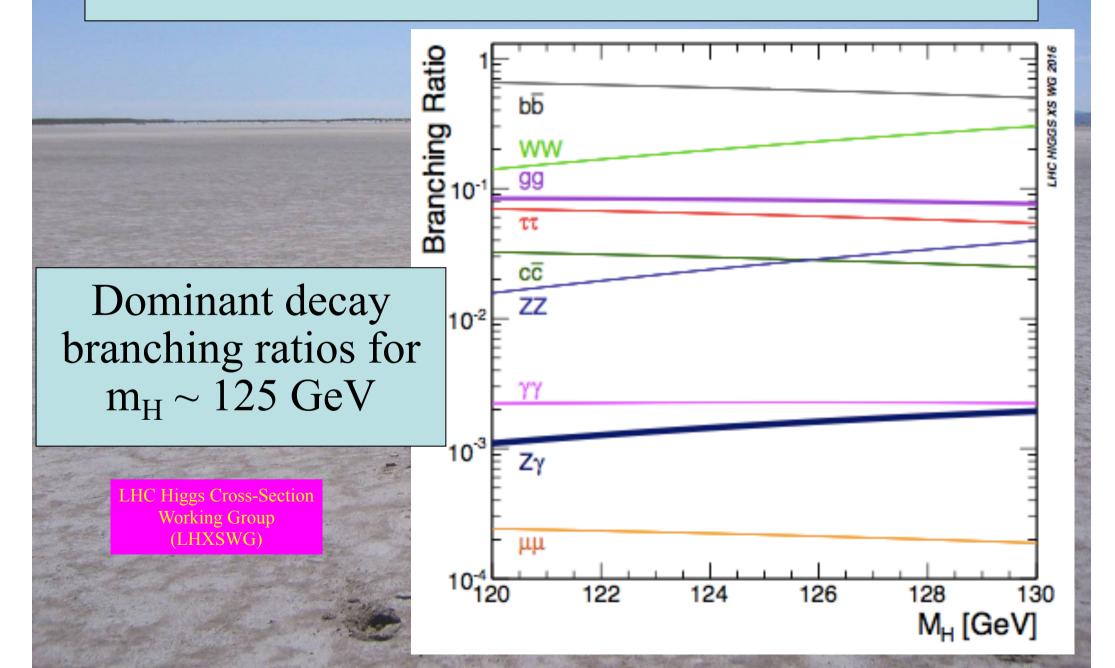
Precision Tests of the Standard Model



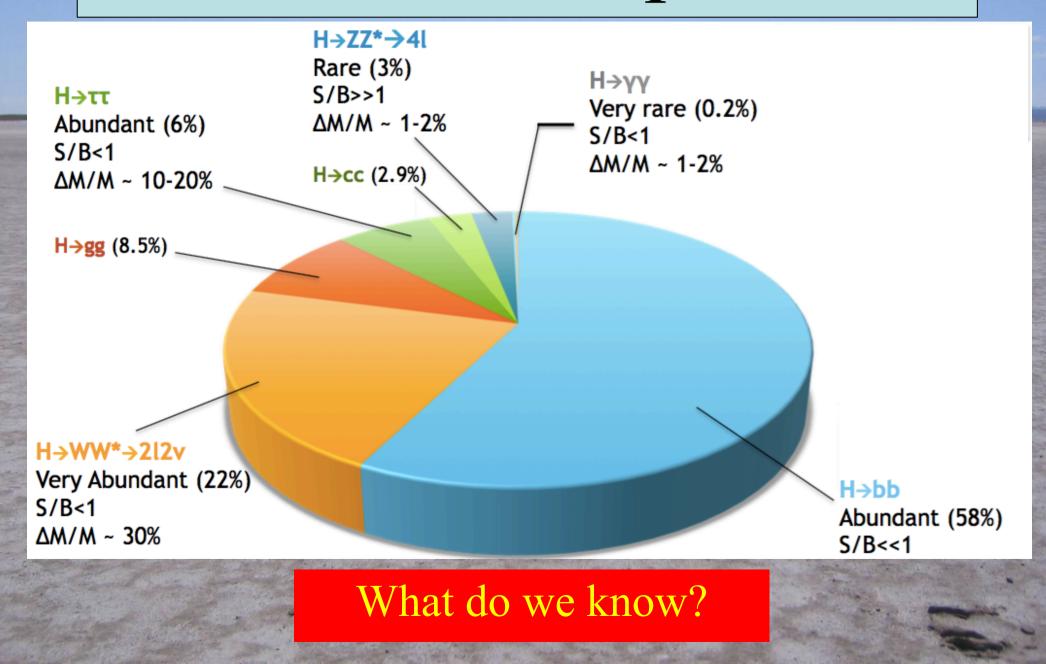

2011 Combining Information from Previous Direct Searches and Indirect Data

A la recherche du Higgs perdu ...

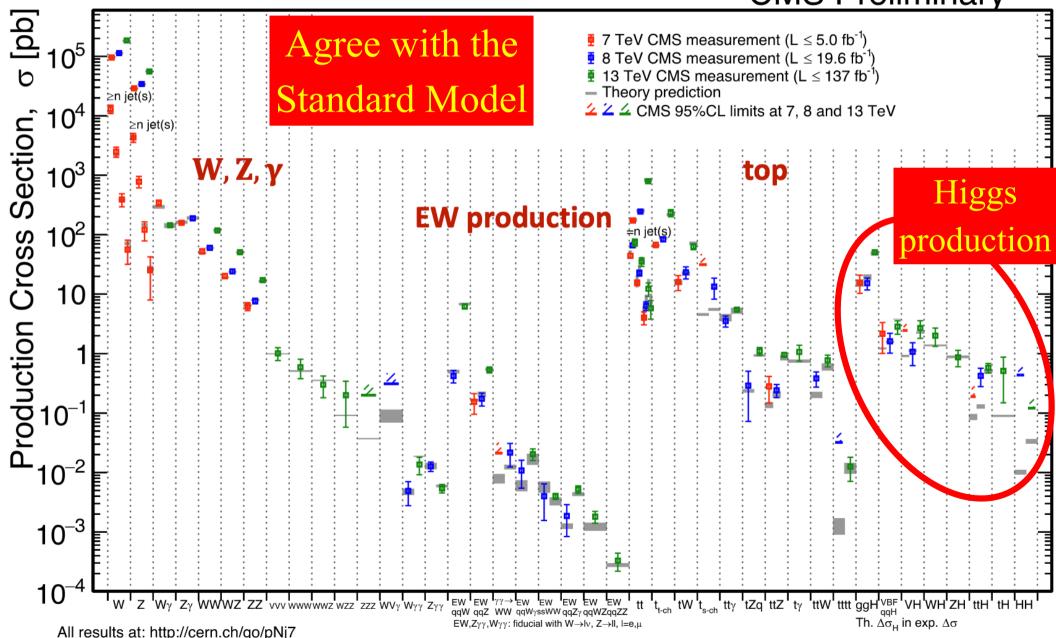

Higgs Production at the LHC



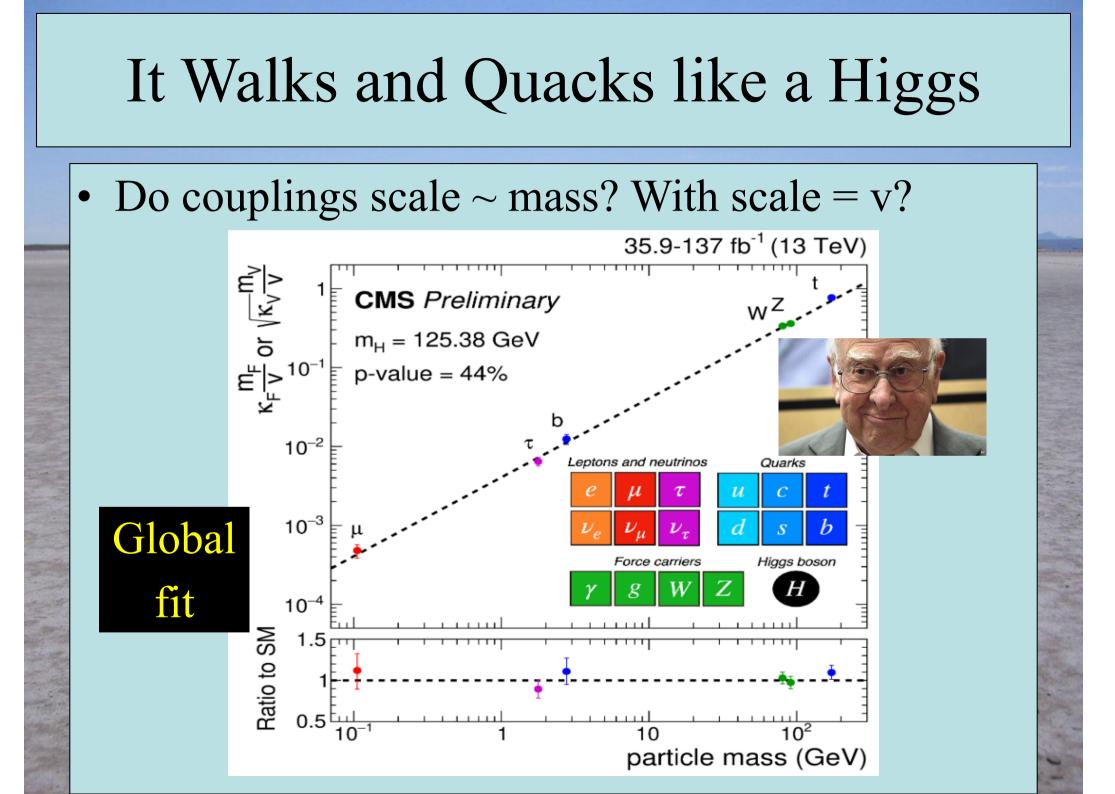
Higgs Decay Branching Ratios


• Couplings proportional to masses (?)

Higgs Decay Branching Ratios


What was Expected

LHC Measurements


June 2021

CMS Preliminary

The Particle Higgsaw Puzzle

Has LHC found the missing piece? Is it the right shape? Is it the right size?

... to make an end is to make a beginning. The end is where we start from. T.S. Eliot, Little Gidding

Everything about Higgs is Puzzling

$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$

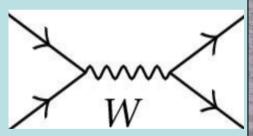
- Pattern of Yukawa couplings y:
 - Flavour problem
- Magnitude of mass term μ:
 - Naturalness/hierarchy problem
- Magnitude of quartic coupling λ:
 Stability of electroweak vacuum
- Cosmological constant term V₀:
 - Dark energy

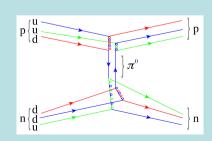
Higher-dimensional interactions?

Looking Beyond the Standard Model with the SMEFT

"...the direct method may be used...but indirect methods will be needed in order to secure victory...."


"The direct and the indirect lead on to each other in turn. It is like moving in a circle...." Who can exhaust the possibilities of their combination?"


Sun Tzu, The Art of War


John Ellis

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A \rightarrow massive vector bosons \rightarrow gauge theory
- Yukawa's meson theory of the strong N-N force
 Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

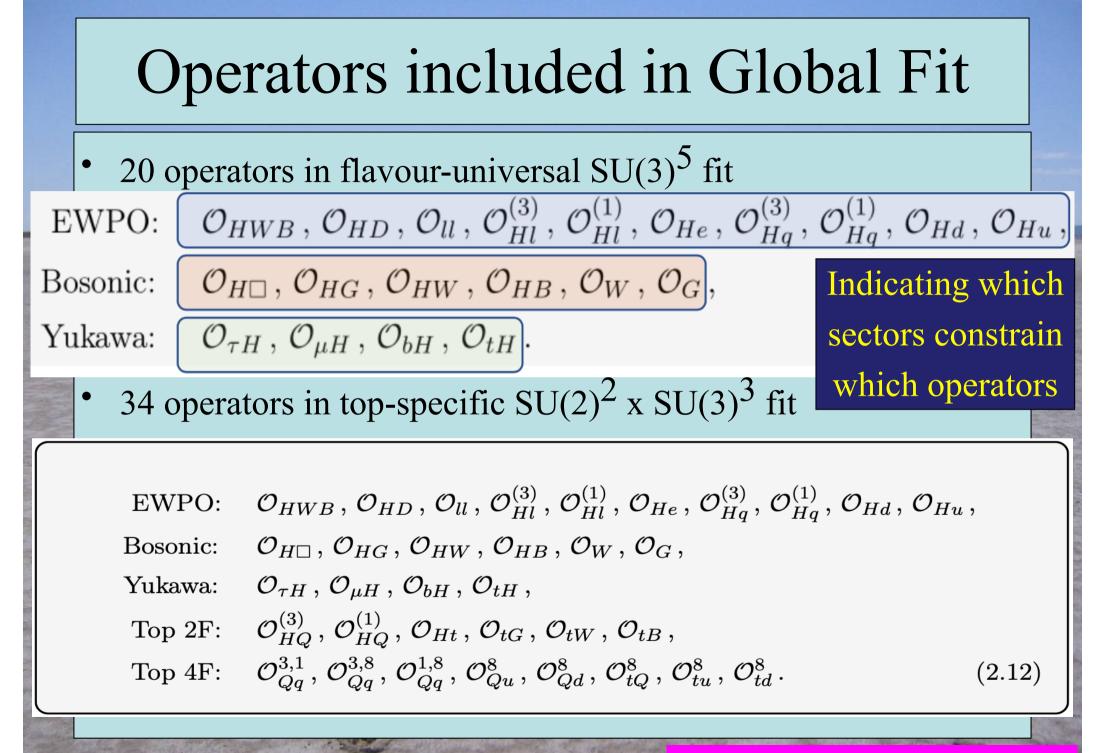
Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Summarize Analysis Framework

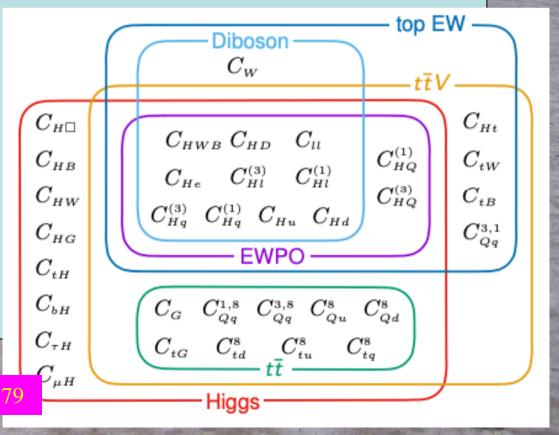
• Include all leading dimension-6 operators?


$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

- Simplify by assuming flavour SU(3)⁵ or SU(2)² x SU(3)³ symmetry for fermions
- Work to linear order in operator coefficients, i.e. $\mathcal{O}(1/\Lambda^2)$
- Use G_F , M_Z , α as input parameters

Dimension-6 Operators in Detail

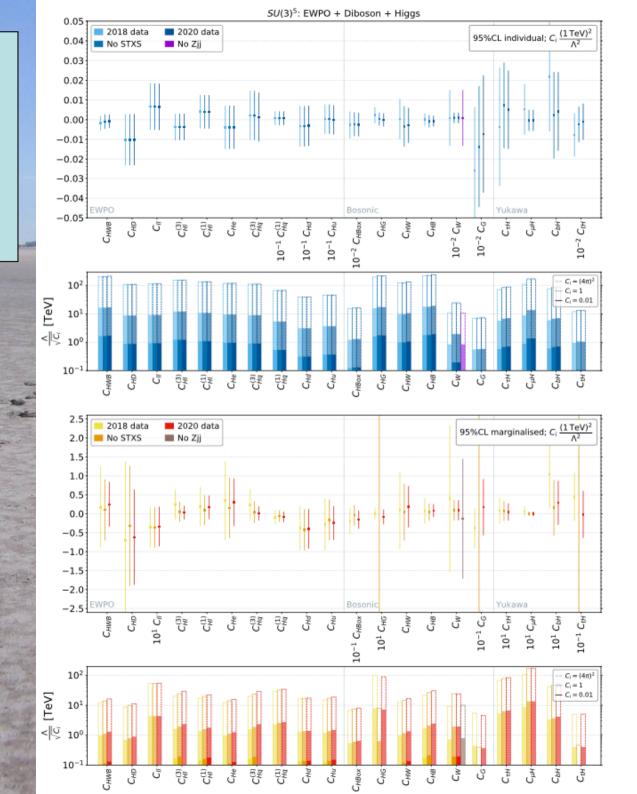
- Including 2- and 4fermion operators
- Different colours for different data sectors
- Grey cells violate SU(3)⁵ symmetry
- Important when including top observables


Ī		X^3		H^6 and H^4D^2		$\psi^2 H^3$			
	\mathcal{O}_{G}	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$			
	$\mathcal{O}_{ ilde{G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$			
	\mathcal{O}_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	${\cal O}_{{}_{HD}}$	$\left(H^{\dagger}D^{\mu}H\right)^{\star}\left(H^{\dagger}D_{\mu}H ight)$	${\cal O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$			
	$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$							
		X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$			
	$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{Hl}^{(1)}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$			
	${\cal O}_{H{\widetilde G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{_{Hl}}^{_{(3)}}$	$(H^{\dagger}i D_{\underline{\mu}}^{I} H)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$			
	\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{_{He}}$	$(H^{\dagger}i \overset{\frown}{D}_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$			
	${\cal O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	${\cal O}_{uW}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i \overset{\overleftarrow{D}}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$			
	$\mathcal{O}_{_{HB}}$	$H^{\dagger}H B_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	${\cal O}_{{\scriptscriptstyle H} q}^{(3)}$	$(H^{\dagger}i D^{I}_{\underline{\mu}} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$			
	${\cal O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overset{\rightarrow}{D_{\mu}} H)(\bar{u}_p \gamma^{\mu} u_r)$			
	\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu u} B^{\mu u}$	${\cal O}_{dW} \ {\cal O}_{dB}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}i D_{\mu} H)(\bar{d}_p \gamma^{\mu} d_r)$			
	$\mathcal{O}_{H\widetilde{W}B}$	$\begin{array}{c c} & \mu\nu\\ & \mu\nu\\ & H\widetilde{W}B \end{array} H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu} \end{array}$		$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	${\cal O}_{{}_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$			
Ī		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$				
	\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$			
	$\mathcal{O}_{_{qq}}^{_{(1)}}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$			
	${\cal O}_{_{qq}}^{_{(3)}}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$\mathcal{O}_{_{dd}}$	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$			
	$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$			
	${\cal O}_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$			
			$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left(\bar{q}_p\gamma_{\mu}T^A q_r)(\bar{u}_s\gamma^{\mu}T^A u_t)\right)$			
			$\mathcal{O}_{ud}^{(8)}$	$\left((\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \right)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$			
l					$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
		$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating					
	\mathcal{O}_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	\mathcal{O}_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{j}^{lpha} ight) ight]$	$(a_{p})^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$			
	$\mathcal{O}_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{lpha} ight) ight]$	$(j)^T C q_r^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$			
	${\cal O}_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$\mathcal{O}_{_{qqq}}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q$	$(p_p^{\alpha j})^T C q_r^{\beta j}$	$\begin{bmatrix} (q_s^{\gamma m})^T C l_t^n \end{bmatrix}$			
	$\mathcal{O}_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	${\cal O}_{duu}$	$\varepsilon^{lphaeta\gamma}\left[\left(d_{p}^{lpha} ight) ight]$	$^{T}Cu_{r}^{\beta}$]	$(u_s^{\gamma})^T Ce_t \Big]$			
	$\mathcal{O}_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$							

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

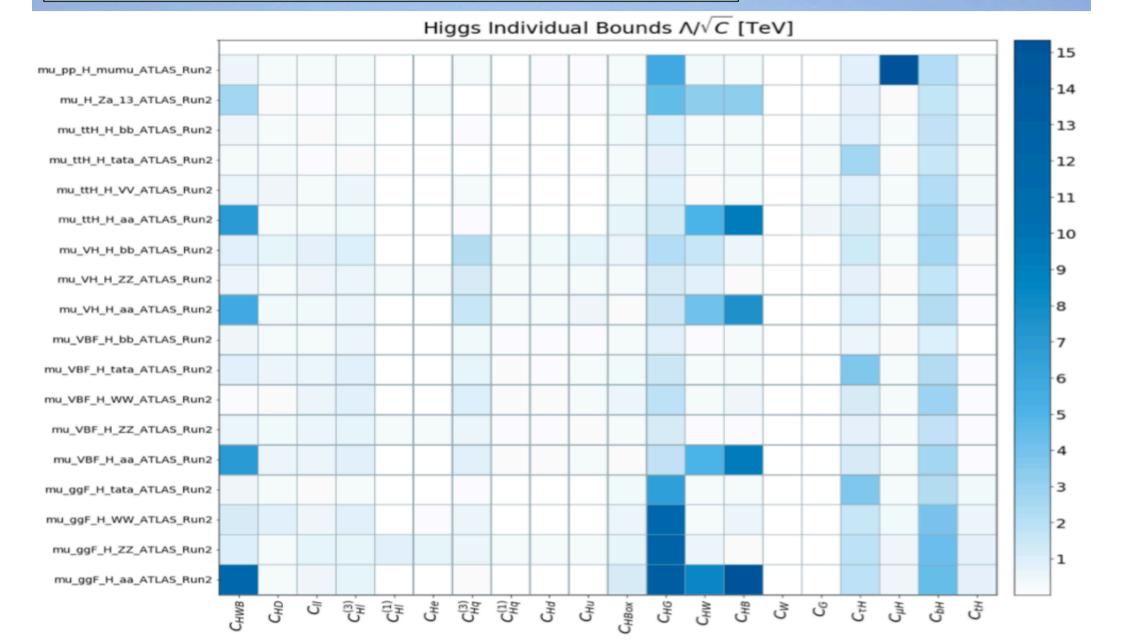
- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1 & 2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level

Madigan, Mimasu, Sanz & You, arXiv


Data included in Global Fit

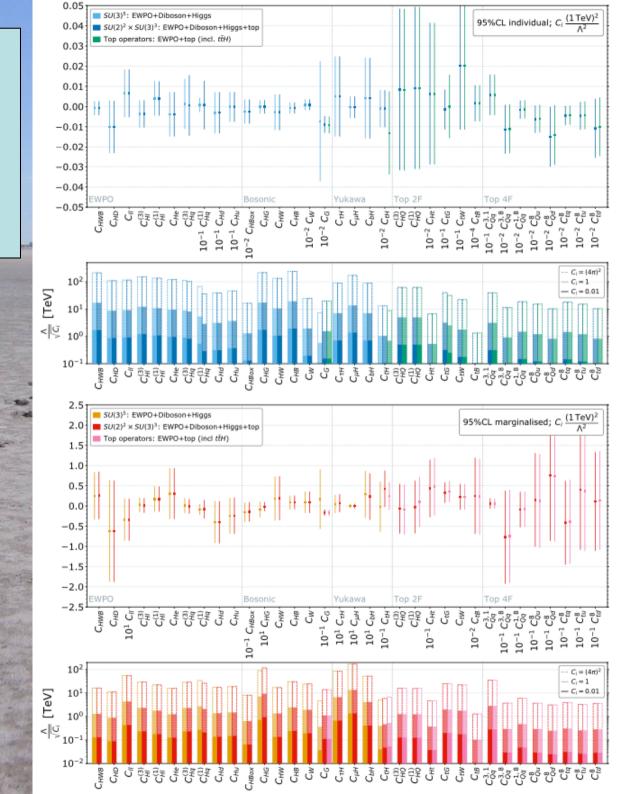
	EW precision observables		Def		
		LHC Run 2 Higgs	Tevatron & Run 1 top nob	s Ref.	
	Precision electroweak measurem	ATLAS combination	Tevatron combination of differential $t\bar{t}$ forward-backward asymmetry, 4	[7]	
	$\Gamma_Z, \sigma_{\text{had.}}^0, R_\ell^0, A_{FB}^\ell, A_\ell(\text{SLD}), A$	including ratios of bra	$A_{FB}(m_{s\bar{s}}).$	L.1	
	Combination of CDF and D0 W	Signal strengths coars	ATLA Run 2 top	nobs	Ref.
	LHC run 1 W boson mass measu	CMS LHC combinatio	$\frac{d\sigma}{dm_{t\bar{t}}}$ CMS $t\bar{t}$ differential distributions in the dilepton channel.	6	36,
	Diboson LEP & LHC	Production: ggF , VB	ATLA $\frac{d\sigma}{dm_{i\bar{i}}}$		231]
2		Decay: $\gamma\gamma$, ZZ, W ⁺ W	$\frac{dm_{e\bar{t}}}{CMS t\bar{t}}$ $\frac{CMS t\bar{t}}{t\bar{t}}$ differential distributions in the ℓ +jets channel.	10	[37]
	W^+W^- angular distribution me	CMS stage 1.0 STXS	$\frac{d\sigma}{dm_{t\bar{t}}}$ $\frac{d\sigma}{dm_{t\bar{t}}}$		
	$W^+ W^-$ total cross section meas	13 parameter fit 7 pa	$\overline{\text{CMS}}$ ATLAS measurement of differential t \overline{t} charge asymmetry, $A_C(m_{t\bar{t}})$.	5	[38]
	final states for 8 energies	- , -	dilepte ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[39]
	$W^+ W^-$ total cross section meas	CMS stage 1.0 STXS	ATLA CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	11	[40]
	qqqq final states for 7 energies	CMS stage 1.1 STXS	dilepte CMS $t\bar{t}Z$ differential distributions. ATLA $d\sigma$ $d\sigma$	44	[41]
111	$W^+ W^-$ total cross section meas	CMS differential cross	$\begin{array}{c c} \text{ATLA} \\ A_C(m) \end{array} \begin{array}{c} \frac{d\sigma}{dp_Z^{T}} \end{array} & \frac{d\sigma}{d\cos\theta^*} \end{array}$		
	& qqqq final states for 8 energies	tion in the $WW^* \to \ell$	CMS CMS measurement of differential cross sections and charge ratios for t	- 5 5	[42]
11.1	ATLAS W^+W^- differential cro	$\frac{d\sigma}{dn_{jet}}$ $\frac{d\sigma}{dp_H^T}$	$\frac{d\sigma}{dm_{e7}dy}$ channel single-top quark production.		
	$p_T > 120$ GeV overflow bin	ATLAS $H \to Z\gamma$ sign	$\frac{d\sigma}{dp_{t+\bar{t}}^T} \left R_t \left(p_{t+\bar{t}}^T \right) \right $		
5	ATLAS W^+W^- fiducial differen	ATLAS $H \rightarrow \mu^+ \mu^-$ si	decay. CMS measurement of <i>t</i> -channel single-top and anti-top cross sections.	4	[43]
111	$\frac{d\sigma}{dp_{\ell_1}^T}$		ATLA f_0 f_t σ_t , $\sigma_{\bar{t}}$, $\sigma_{t+\bar{t}}$ & R_t .		
1		1	f_0, f_L CMS measurement of the <i>t</i> -channel single-top and anti-top cross sections	. 1 1 1 1	[44]
ATLAS $W^{\pm} Z$ fiducial differential cross section in the ℓ^+			$f_0, f_L = \sigma_t \sigma_{\bar{t}} \sigma_{t+\bar{t}} R_t.$		
et la	$\frac{d\sigma}{dp_Z^T}$		ATLA CMS <i>t</i> -channel single-top differential distributions.	4 4	[45]
N. N.	CMS $W^{\pm}Z$ normalised fiducial d	ifferential cross section	$\frac{\text{CMS}}{\text{M}} \left \frac{d\sigma}{dp_{t+\bar{t}}^T} \right \frac{d\sigma}{d y_{t+\bar{t}} } $		
1 1	channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_{\sigma}^T}$		$\begin{array}{c} \begin{array}{c} \text{ATLA} \\ \frac{d\sigma}{dp_t^T} \\ \frac{d\sigma}{dp_t^T} \end{array} \\ \begin{array}{c} \text{CMS } tZ \text{ cross section measurement.} \end{array} \\ \end{array} \\ \begin{array}{c} 328 \text{ meas} \\ 328 \text{ meas} \\ \end{array} \\ \end{array}$	uremer	nts 📃
	ATLAS Zjj fiducial differential c	ross section in the $\ell^+\ell^-$	$\frac{dp_t^T}{CMS} \xrightarrow{T} CMS tZ \text{ cross section measurement.}$		
No. of			CMS tW cross section measurement.	led in	
17	LHC Run 1 Higgs		$\frac{1}{dp^T}$		
	ATLAS and CMS LHC Run 1 co	mbination of Higgs sign	CMS_{ℓ} CMS $tZ(Z \rightarrow \ell^+ \ell^-)$ cross section measurement	1 •	
Production: ggF, VBF, ZH, WH & ttH			$\frac{\sigma_t \sigma_{t+\tilde{t}} R_t}{\sigma_t \sigma_{t+\tilde{t}} R_t}$	inalys1s	5
	Decay: $\gamma\gamma$, ZZ, W^+W^- , $\tau^+\tau^-$ &		ATLAS s-channel single-top cross section measurement.		ALC: NO.
No.	ATLAS inclusive $Z\gamma$ signal streng		CMS tW cross section measurement. 1 ATLAS tW cross section measurement in the single lepton channel 1	[33]	Carlo and
	The state of the s	Sen mousurement	ATLAS tW cross section measurement in the study buttle thanks. Sanz & You	arXiv:2012.01	2779
	and the second of the second of the second	and the second second second second second	- ve, hudiguit, hindst, builz te rou		

Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

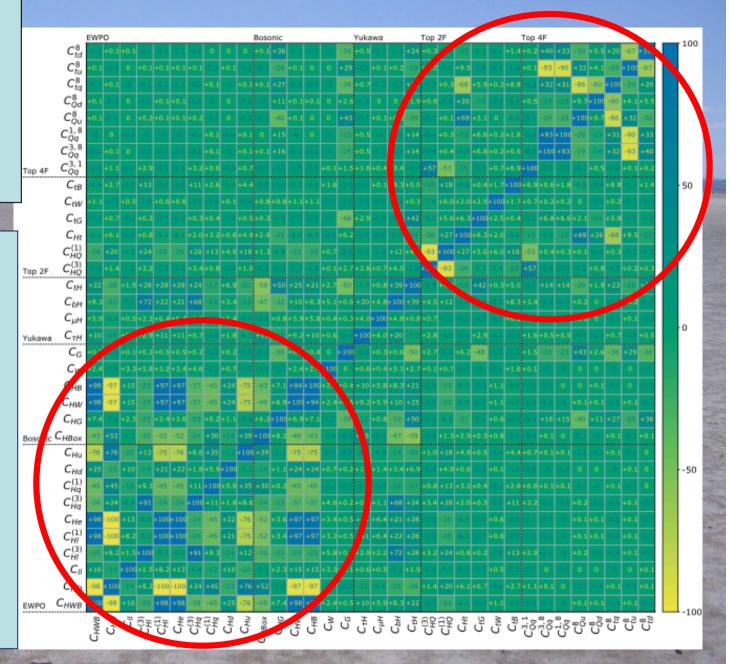

- Individual operator coefficients
- Marginalised

 over all other
 operator
 coefficients

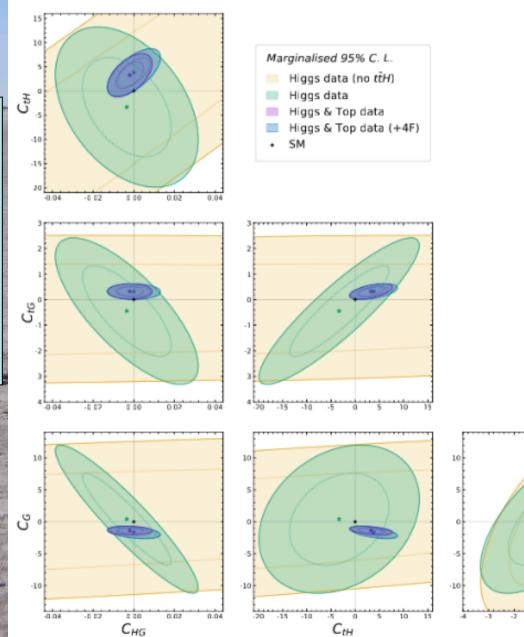
Impacts of Measurements $\left| \frac{X}{X_{SM}} = 1 + \sum_{i} \frac{a_{i}^{X} C_{i}}{\Lambda^{2}} + \mathcal{O} \right|$

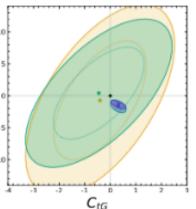


Dimension-6 Constraints with Top-Specific $SU(2)^2 \times SU(3)^3$


- Individual operator coefficients
- Marginalised

 over all other
 operator
 coefficients

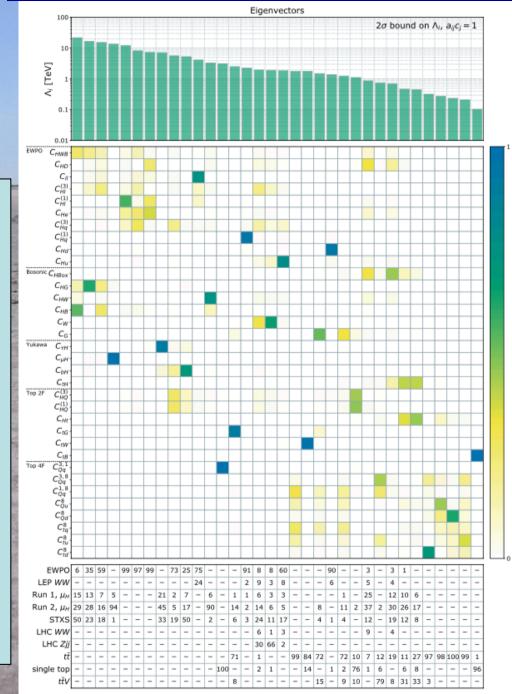

Correlation Analysis


- EWPO and boson sectors correlated
- Also within top sector
- Weaker correlations between sectors

Example of Interplay between Data Sets

- Higgs data
- Include ttH
- Include top data
- Global analysis

Principal Component Analysis


- Diagonalise correlation matrix
- Analyze eigenvectors and eigenvalues
- Scales from 20 TeV to 100 GeV
- Strongest constraints from Electroweak, H

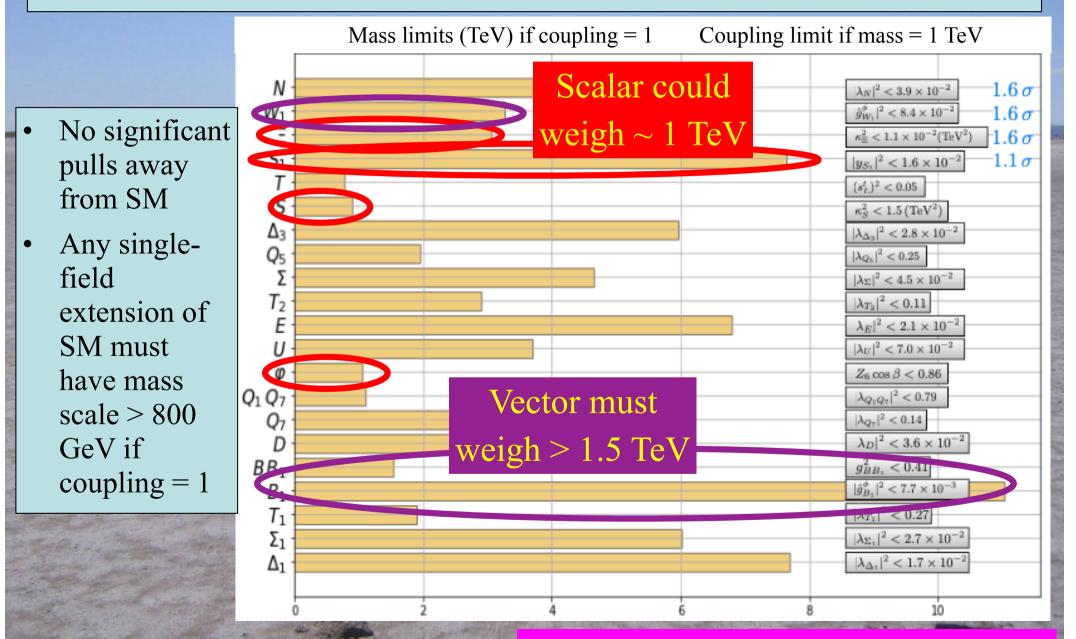
JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

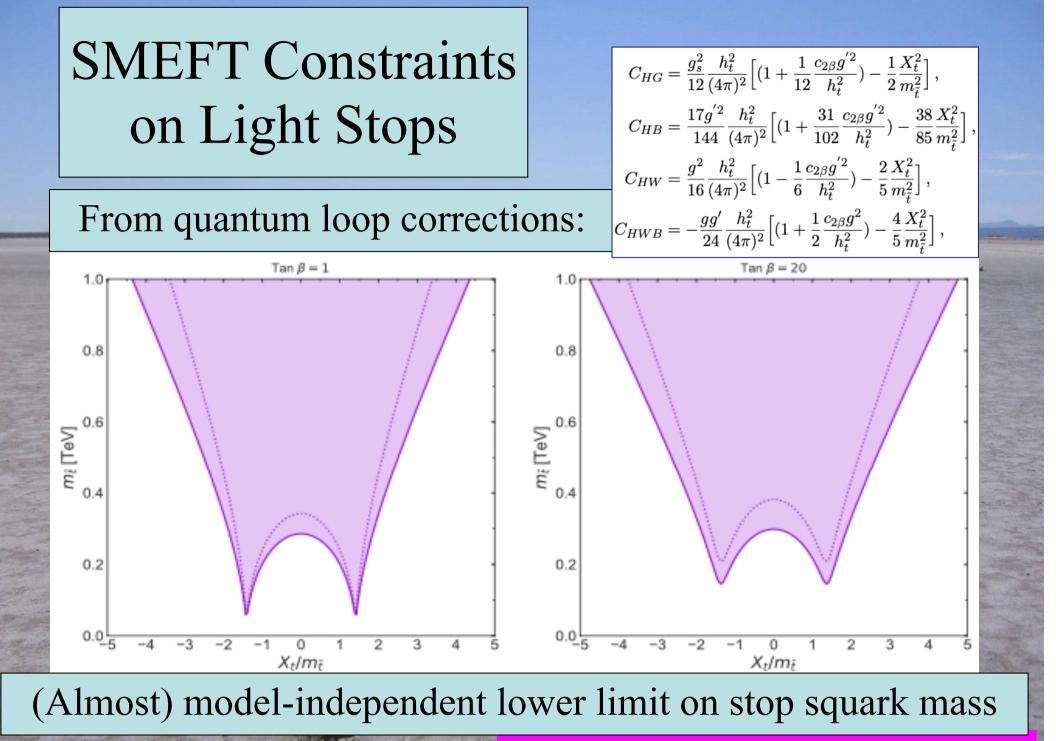
Less constrained operator combinations \rightarrow

elative importance

(%)

Relative constraining power (%)

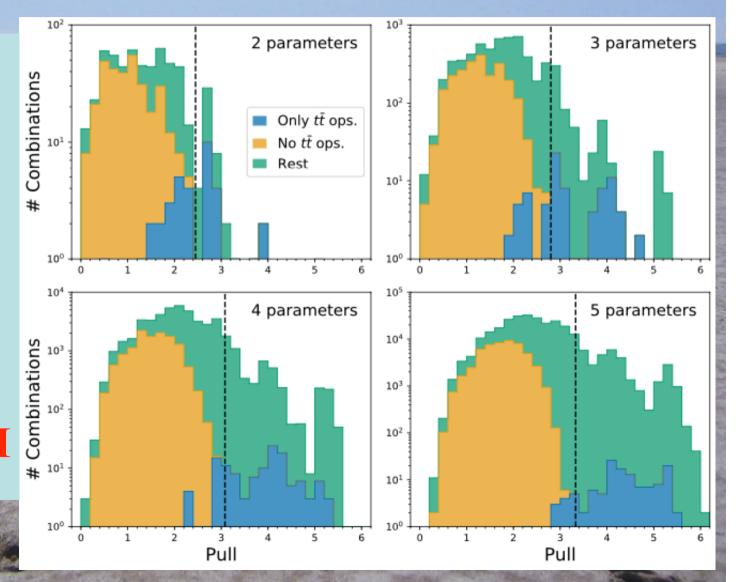

Single-Field Extensions of the Standard Model


	Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
	S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
1	S_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
	arphi	0	Spin z	ero <mark>2</mark>	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
	[1]	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
	1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
	PA		1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
The line	B_1	1	Vector-	1	1	Q_1	$rac{1}{2}$	3	2	$\frac{1}{6}$
	W	1		3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
	W_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
1 - 1 - 1	\overline{N}	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
ALL ALL	E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
and a state	T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$

Contributions to SMEFT Coefficients

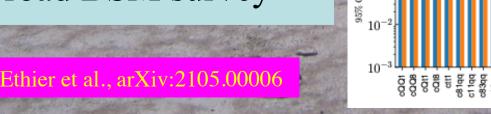
	Model	C_{HD}	C_{ll}	C_{Hl}^3	C_{Hl}^1	C_{He}	$C_{H\Box}$	$C_{ au H}$	C_{tH}	$igcap_{bH}$
Spin ze	S S						-1			
Spin Z	S_1		1							
	Σ			58	$\frac{\frac{3}{16}}{-\frac{3}{16}}$			$\frac{y_{ au}}{4}$		
	Σ_1			$-\frac{5}{8}$ $-\frac{1}{4}$	$-\frac{3}{16}$			$\frac{y_{ au}}{8}$		
				$-\frac{1}{4}$	$\frac{1}{4}$					
and the second second				$-\frac{1}{4}$	$-\frac{1}{4}$	1		$\frac{y_{\tau}}{2}$		
	Δ_1					$\begin{array}{r} \frac{1}{2} \\ -\frac{1}{2} \end{array}$		$\frac{y_{\tau}}{2}$		
State of the	Δ_3					$-\frac{1}{2}$	1	$\frac{y_{\tau}}{2}$		
A .	B_1	1					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
Spin ze		-2					$\frac{\frac{1}{2}}{-\frac{1}{8}}$	$y_{ au}$	y_t	y_b
a .		ector $-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
Spin ze		7						$-y_{ au}$	$-y_t$	$-y_b$
		Vector					1	$y_{ au}$	y_t	y_b
	$\left\{Q_1, Q_7\right\}$				0	1			y_t	
	Model	C_{HG}	C_{Hq}^3	C^1_{Hq}	$(C^3_{Hq})_{33}$	$(C^{1}_{Hq})_{33}$	C_{Hu}	C_{Hd}	C_{tH}	C_{bH}
	U		$-\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$			$\frac{y_t}{2}$	
-			$-\frac{1}{4}$	$-\frac{1}{4}$	$\begin{array}{c} -\frac{1}{4} \\ -\frac{1}{4} \end{array}$	$-\frac{1}{4}$				$\begin{array}{c} \frac{y_b}{2} \\ \frac{y_b}{2} \\ \end{array}$
The state	Q_5							$-\frac{1}{2}$		$\frac{y_b}{2}$
Long i	Q_7						$\frac{1}{2}$		$\frac{y_t}{2}$	
- Alexandra	T_1		$-\frac{5}{8}$ $-\frac{5}{8}$	$\begin{array}{r} -\frac{3}{16} \\ \frac{3}{16} \end{array}$	$-\frac{5}{8}$	$-\frac{3}{16}$			$\frac{y_t}{4}$	$\begin{array}{c} \frac{y_b}{8} \\ \frac{y_b}{4} \end{array}$
A. C.	T_2		$-\frac{5}{8}$	$\frac{3}{16}$	$-\frac{5}{8}$	$\frac{3}{16}$			$\frac{y_t}{8}$	$\frac{y_b}{4}$
The second second	T	$-rac{M_T^2}{v^2}rac{lpha_s(0.02)}{8\pi}$			$-\frac{5}{8} \\ -\frac{5}{8} \\ -\frac{1}{2} \frac{M_T^2}{v^2}$	$-rac{3}{16} \ rac{3}{16} \ rac{1}{2} rac{M_T^2}{v^2}$			$rac{rac{y_t}{8}}{y_trac{M_T^2}{v^2}}$	

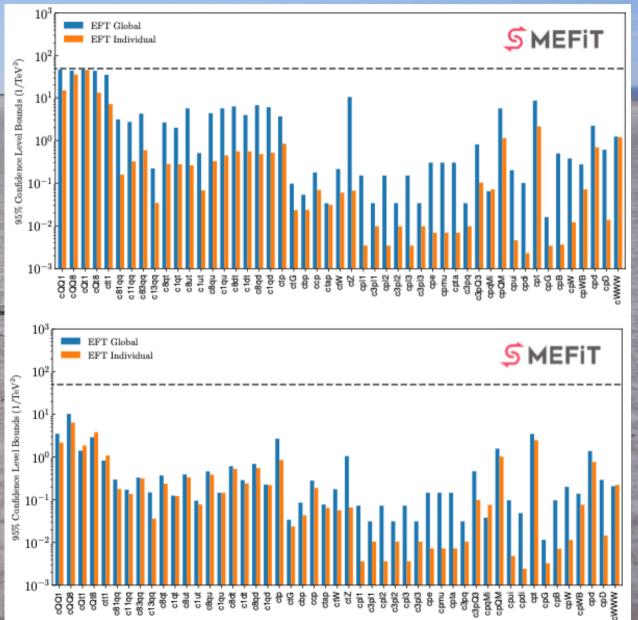

Constraints on Single-Field BSM Scenarios


Direct Search Constraints on Light Stops

- Patchwork of many modeldependent searches
- Indirect constraint excludes lowmass region (almost) modelindependently

Model-Independent BSM Survey


- Top-less sector fits SM very well
- Top sector does not fit so well
- Overall, pulls not excessive
- No hint of BSM



Comparison of Linear and Quadratic Fits

- Quadratic fit assuming EW data = Standard Model
- Tighter constraints in general
- What about dimension
 8, also contribute at

 O(1/Λ⁴)?
- Fitting process slower, difficult to make broad BSM survey

Summary

- **Remember Sun Tzu:** search for new physics indirectly as well as directly
- SMEFT is an effective, model-independent tool for probing indirectly possible physics beyond the SM
- It can be used to analyze jointly precision electroweak, diboson and top quark data from LHC and elsewhere
- Our current analysis indicates that the scale of new physics is probably > TeV
- Useful for assessing sensitivities of proposed future accelerators

Dimension 4

Standard Model

SMEFT dimensions > 4