QCD, Higher Orders and Jets

Matteo Cacciari
LPTHE Paris and Université de Paris

Lecture I: Basics of QCD

Collider Physics

We use colliders to discover particles Beyond the Standard Model particles. This is what a typical LHC detector looks like:

What can we actually directly observe?

Collider Physics

Not much. Only particles that travel this far (i.e. at least a few centimetres) without decaying.

The relevant relation is distance $=c T$. Distance $=1 \mathrm{~m}$ needs $\mathrm{T}=0.310-8 \mathrm{~s}$
What makes it this far? / What can we detect?

- Particles that are absolutely stable:
- protons, electrons/positrons, photons, neutrinos
- Particles with cT > Im:
- muons, neutrons, pions, kaons
- Particles that decay very quickly (cT $\sim 0.01 \mathrm{~mm}$ to Im) but that we can easily infer either via reconstructed invariant mass of their decays, or displaced vertices (especially if boosted), or other characteristics of their decay products:
- strange, charm, beauty hadrons

Collider Physics

This is about it. All other particles (W, Z, top, Higgs, BSM physics...) must be deduced from measurements of

- electron/positron candidates
- muon/antimuon candidates
- charged hadron
- neutral hadron (no tracks, calo only)
- missing transverse momentum

The challenge is to calculate predictions at the "fundamental physics" scale (<< proton size) and connect it to what we observe at macroscopic scales (detector size)

A hadron collider event
[NB. NOT to scale!]

Strong interactions are complicated

Predictions

"We are driven to the conclusion that the Hamiltonian method for strong interactions is dead and must be buried, although of course with deserved honor"

Lev Landau
"The correct theory [of strong interactions] will not be found in the next hundred years"

Freeman Dyson
We have come a long way towards disproving these predictions

A hadronic process

Bibliography

Books and "classics"...

- T. Muta, Foundations of Quantum Chromodynamics, World Scientific (1987)
- R.D. Field, Applications of perturbative QCD,Addison Wesley (I989)

Great for specific examples of detailed calculations

- R.K. Ellis,W.J. Stirling and B.R.Webber, QCD and Collider Physics, Cambridge University Press (1996)

Phenomenology-oriented

- G. Sterman, An Introduction to Quantum Field Theory, Cambridge University Press (1993) A QFT book, but applications tilted towards QCD
- Dokshitzer, Khoze, Muller, Troyan, Basics of perturbative QCD, http://www.lpthe.jussieu.fr/~yuri
- Dissertori, Knowles, Schmelling, Quantum Chromodynamics: High Energy Experiments and Theory, Oxford Science Publications
- Campbell, Huston, Krauss, The Black Book of Quantum Chromodynamics, Oxford University Press

Perhaps the most recent QCD book

- M.L. Mangano, Introduction to QCD, http://doc.cern.ch//archive/cernrep//I999/99-04/p53.pdf
- S. Catani, Introduction to QCD, CERN Summer School Lectures 1999

Bibliography

...and more recent lectures, slides and...videos

- Gavin Salam,
"Elements of QCD for Hadron Colliders", http://arxiv.org/abs/arXiv:1011.5131
- http://gsalam.web.cern.ch/gsalam/teaching/PhD-courses.html
- Peter Skands

20I5 CERN-Fermilab School lectures, http://skands.physics.monash.edu/slides/

- "Introduction to QCD", http://arxiv.org/abs/arXiv:I207.2389
- Fabio Maltoni
"QCD and collider physics", GGI lectures, https://www.youtube.com/playlist?list=PLI CFLtxelrQqvt-e8C5pwBKG4PljSyouP
- Search YouTube for "GGI Thaler","GGI Soyez","GGI Catani" "GGI Peskin"
- Search You Tube/web for "ICTP particle physics summer school"

Outline of ‘Basics of QCD'

- strong interactions
- QCD lagrangian, colour, ghosts
- running coupling
- radiation
- calculations of observables
- theoretical uncertainties estimates
- power corrections
- infrared divergencies and IRC safety
- factorisation

QED v. QCD

QED has a wonderfully simple lagrangian, determined by local gauge invariance

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi-e \bar{\psi} \nexists \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

In the same spirit, we build QCD: a non abelian local gauge theory, based on $\mathrm{SU}(3)_{\text {colour }}$, with 3 quarks (for each flavour) in the fundamental representation of the group and 8 gluons in the adjoint

What's new?

I. Colour

A fundamental colour relation

$\delta_{i j} \delta_{l k}=\frac{1}{N} \delta_{i k} \delta_{l j}+2 t_{i k}^{A} t_{l j}^{A}$

Take i=j in
$\delta_{i j} \delta_{l k}=\frac{1}{N} \delta_{i k} \delta_{l j}+2 t_{i k}^{A} t_{l j}^{A}$

\Downarrow

$$
N \delta_{l k}=\frac{1}{N} \delta_{l k}+2 t_{i k}^{A} t_{l i}^{A}
$$

$$
\left(t^{A} t^{A}\right)_{l k}=\frac{1}{2}\left(N-\frac{1}{N}\right) \delta_{l k}=\frac{N^{2}-1}{2 N} \delta_{l k} \equiv C_{F} \delta_{l k}
$$

This defines C_{F}.
It is the Casimir of the fundamental representation of $\mathrm{SU}(\mathrm{N})$. What is it, physically?

$$
\begin{aligned}
& \text { Gluon emission } \\
& \text { from a quark } \\
& \text { A } \\
& \xrightarrow[\mathrm{i}]{\longrightarrow} \operatorname{lom}^{606 \mathrm{~V}^{\mathrm{A}}} \sim t_{j i}^{A} \\
& \operatorname{Prob} \sim \sum_{j A}|\rightarrow \underset{j A}{\text { مfir }}|^{2} \sim \sum_{j A} t_{i j}^{A} t_{j i}^{A}=\sum_{A}\left(t^{A} t^{A}\right)_{i i}=C_{F} \delta_{i i}
\end{aligned}
$$

$\mathbf{C}_{\mathbf{F}}=\left(\mathbf{N}^{2}-\mathrm{I}\right) /(\mathbf{2} \mathbf{N})$ is therefore the 'colour charge' of a quark, i.e. its probability of emitting a gluon (except for the strong coupling, of course)

Analogously, one can show that

$$
\text { Prob }\left.\left.\sim \sum_{B C}\right|_{\mathrm{A}} \underset{\mathrm{~A}}{\mathrm{C}} \underset{\mathrm{C}}{\mathrm{C}}\right|^{2} \sim C_{A} \delta_{A A}
$$

$\mathbf{C}_{\mathbf{A}}=\mathbf{N}$ is the 'colour charge' of a gluon, i.e. its probability of emitting a gluon (except for the strong coupling, of course).

It is also the Casimir of the adjoint representation.

What's new?

2. Gauge bosons self couplings

In QCD the gluons interact among themselves:

$$
\begin{gathered}
\mathcal{L}_{Y M}=-\frac{1}{4} \sum_{a} F_{\mu \nu}^{a} F^{a \mu \nu} \\
F_{\mu \nu}^{a}=\partial_{\mu} A_{v}^{a}-\partial_{v} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{v}^{c}
\end{gathered}
$$

New Feynman diagrams, in addition to the 'standard' QED-like ones
Direct consequence of non-abelianity of theory

What's new?

3. Need for ghosts

Cancel unphysical degrees of freedom that would otherwise propagate in covariant gauges

Table 1: Feynman rules for QCD in a covariant gauge.

Ghosts: an example

$g g \rightarrow q q$

In QED we would sum over the (photon) polarisations using

$$
\sum_{p o l} t_{i}^{t_{i} \varepsilon^{\nu}}=-g_{\mu \nu}
$$

In QCD this would give the wrong result

We must use instead

Ghosts: an example

An alternative approach is to include the ghosts in the calculation

Now we can safely use

$$
\sum_{p o l} \epsilon_{i}^{\mu} \epsilon_{i}^{* \nu}=-g_{\mu \nu}
$$

Macroscopic differences

I. Confinement (probably -- no proof in QCD) We never observe the fundamental degrees of freedom (quarks and gluons). They are always confined into hadrons.

2. Asymptotic Freedom

The running coupling of the theory, α_{s}, decreases at large energies

QCD radiation

Start with $\gamma^{*} \rightarrow q \bar{q}:$

$$
\mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right)
$$

Emit a gluon:

In the soft limit , $k \ll \operatorname{PI}, 2$

$$
\mathcal{M}_{q \bar{q} g} \simeq \bar{u}\left(p_{1}\right) e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)
$$

QCD radiation

Squared amplitude, including phase space

$$
\frac{d \Phi_{q \bar{q} \bar{g}}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q}}\left|M_{q \bar{q}}^{2}\right|\right) \frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}}{\text { Factorisation: Born } \times \text { radiation }}
$$

Changing variables (use energy of gluon E and emission angle θ) we get

$$
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi}
$$ for the radiation part

QCD emission probability

$$
\frac{d P_{k \rightarrow i j}}{d E_{i} d \theta_{i j}} \sim \frac{\alpha_{s}}{\min \left(E_{i}, E_{j}\right) \theta_{i j}}
$$

Singular in the soft $\left(\mathrm{E}_{\mathrm{i}, \mathrm{j}} \rightarrow 0\right)$ and in the collinear $\left(\theta_{\mathrm{ij}} \rightarrow 0\right)$ limits. Logarithmically divergent upon integration

The divergences can be cured by the addition of virtual corrections and/or if the definition of an observable is appropriate

Altarelli-Parisi kernel

Using the variables $\mathrm{E}=(\mathrm{I}-\mathrm{z}) \mathrm{p}$ and $\mathrm{k}_{\mathrm{t}}=\mathrm{E} \theta$ we can rewrite

$$
\begin{gathered}
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi} \rightarrow \frac{\alpha_{s} C_{F}}{\pi} \frac{1}{1-z} d z \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{d \phi}{2 \pi} \\
\text { 'almost' the Altarelli-Parisi } \\
\text { splitting function } \mathrm{P}_{\mathrm{qq}}
\end{gathered}
$$

Massive quarks

If the quark is massive the collinear singularity is screened

$$
\frac{\alpha_{s} C_{F}}{\pi} \frac{1}{1-z} d z \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{d \phi}{2 \pi} \rightarrow \frac{\alpha_{s} C_{F}}{\pi} \frac{1}{1-z} d z \frac{d k_{t}^{2} /}{k_{t}^{2}+(1-z)^{2} m^{2}} \frac{d \phi}{2 \pi}+\cdots
$$

Angular ordering

The universal soft and collinear spectrum is not the only relevant characteristic of radiation. Angular ordering is another

Angular ordering means $\theta<\theta_{\text {ee }}$

Soft radiation emitted by a dipole is restricted to cones smaller than the angle of the dipole

(O) Rence

Angular ordering is a manifestation of coherence, a phenomenon typical of gauge theories

Coherence leads to the Chudakov effect, suppression of soft bremsstrahlung from an $\mathrm{e}^{+} \mathrm{e}^{-}$pair.
"Quasi-classical" explanation: a soft photon cannot resolve a small-sized pair, and only sees its total electric charge (i.e. zero)

The phenomenon of coherence is preserved also in QCD. Soft guon radiation off a coloured pair can be described as being emitted coherently by the colour charge of the parent of the pair

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

Easiest higher order calculation in QCD. Calculate $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qqbar}+X$ in pQCD

Born

$\alpha_{s}{ }^{0}$

Virtual

Real

$\alpha_{s}{ }^{\prime}$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

Regularize with dimensional regularization, expand in powers of ε

$$
\begin{array}{r}
\sigma^{q \bar{q} g}=2 \sigma_{0} \frac{\alpha_{\mathrm{S}}}{\pi} H(\epsilon)\left[\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+\frac{19}{2}-\pi^{2}+\mathcal{O}(\epsilon)\right] \\
\sigma^{q \bar{q}}=3 \sigma_{0}\left\{1+\frac{2 \alpha_{\mathrm{S}}}{3 \pi} H(\epsilon)\left[-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8+\pi^{2}+\mathcal{O}(\epsilon)\right]\right\} \text { Virtual } \\
R=3 \sum_{q} Q_{q}^{2}\left\{1+\frac{\alpha_{\mathrm{S}}}{\pi}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)\right\} \text { Sum }
\end{array}
$$

Real and virtual, separately divergent, 'conspire' to make total cross section finite

Cancellation of singularities

In fact, the 'conspiration' is not accidental

Block-Nordsieck theorem

IR singularities cancel in sum over soft unobserved photons in final state (formulated for massive fermions \Rightarrow no collinear divergences)

Kinoshita-Lee-Nauenberg theorem IR and collinear divergences cancel in sum over degenerate initial and final states

These theorems suggest that the observable must be crafted in a proper way for the cancellation to take place

Scale dependence

$$
K_{Q C D}=1+\frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{\pi}+\sum_{n \geq 2} C_{n}\left(\frac{s}{\mu^{2}}\right)\left(\frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{\pi}\right)^{n}
$$

None.

Cross section prediction varies with renormalisation scale choice. Which value do we pick for μ ?
μ cannot be uniquely fixed. It can however be exploited to estimate the theoretical uncertainty of the calculation

Theoretical uncertainties

We wrote before: $\frac{d}{d \ln \mu^{2}} \ln \sigma^{p h y s}=0$
i.e. independence of cross sections on artificial scales

Would only hold for all-orders calculations. In real life: residual dependence at one order higher than the calculation

$$
\frac{d}{d \log \mu} \sum_{n=1}^{N} c_{n}(\mu) \alpha_{S}^{n}(\mu) \sim \mathcal{O}\left(\alpha_{S}^{n}(\mu)^{N+1}(\mu)\right)
$$

Vary scales (around a physical one) to ESTIMATE the uncalculated higher order

Non-perturbative contributions

We have calculated $\sum \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)$ in perturbative QCD

However

$$
\sum \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right) \neq \sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)
$$

The (small) difference is due to hadronisation corrections, and is of non-perturbative origin

We cannot calculate it in PQCD, but in some cases we can get an idea of its behaviour from the incompleteness of pQCD itself

Renormalons

Suppose we keep calculating to
higher and higher orders:

$$
\rightarrow \alpha_{s}^{n+1} \beta_{0 f}^{n} n!\quad \begin{gathered}
\text { Factorial } \\
\text { growth }
\end{gathered}
$$

This is big trouble: the series is not convergent, but only asymptotic

$$
R_{n}
$$

Evidence: try summing

$$
\begin{gathered}
R=\sum_{n=0}^{\infty} \alpha^{n} n! \\
(\alpha=0.1)
\end{gathered}
$$

minimal term
$n_{\text {min }} \simeq 1 / \alpha$

Asymptotic value of the sum:

Power corrections

The renormalons signal the incompleteness of perturbative QCD

One can only define what the sum of a perturbative series is (like truncation at the minimal term)

The rest is a genuine ambiguity, to be eventually lifted by non-perturbative corrections:

$$
R^{\text {true }}=R^{p Q C D}+R^{N P}
$$

In QCD these non-perturbative corrections take the form of power suppressed terms:

$$
R^{N P} \sim \exp \left(-\frac{p}{\beta_{0} \alpha_{s}}\right)=\exp \left(-p \ln \frac{Q^{2}}{\Lambda^{2}}\right)=\left(\frac{\Lambda^{2}}{Q^{2}}\right)^{p}
$$

The value of p depends on the process, and can sometimes be predicted by studying the perturbative series: pQCD - NP physics bridge

Event shapes:Thrust

Another example of a calculable $\mathrm{e}^{+} \mathrm{e}^{-}$observable One of the simplest examples of an 'event shape’

$$
T=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|},
$$

2-jet event: $\quad T \simeq 1$
3-jet event: $\quad T \simeq 2 / 3$
from G. Salam

Event shapes

Perturbative (and NP) QCD predictions

pQCD calculations: hadrons

Turn hadron production in e+e- collisions around: Drell-Yan.

Still easy in Parton Model: just a convolution of probabilities

$$
\begin{aligned}
\frac{d \sigma_{N N \rightarrow \mu \bar{\mu}+X}\left(Q, p_{1}, p_{2}\right)}{d Q^{2} d \ldots} & \sim \int d \xi_{1} d \xi_{2} \sum_{a=\mathrm{q} \overline{\mathrm{q}}} \frac{d \sigma_{\mathrm{a} \overline{\mathrm{a}} \rightarrow \mu \bar{\mu}}^{\mathrm{EW}, \mathrm{Born}}\left(Q, \xi_{1} p_{1}, \xi_{2} p_{2}\right)}{d Q^{2} d \ldots} \\
& \times\left(\text { probability to find parton } \mathrm{a}\left(\xi_{1}\right) \text { in } N\right) \\
& \times\left(\text { probability to find parton } \overline{\mathrm{a}}\left(\xi_{2}\right) \text { in } N\right)
\end{aligned}
$$

This isn't anymore an inclusive process as far as hadrons are concerned: I find them in the initial state, I can't 'sum over all of them'

Still, the picture holds at tree level (parton model)
The parton distribution functions can be roughly equated to those extracted from DIS

Challenges in QCD

The non-inclusiveness of a general strong interaction process is a threat to calculability.

What do we do if we can't count on Bloch-Nordsieck and Kinoshita-Lee-Nauenberg?

QCD calculations adopt two strategies:

- Infrared and collinear safe observables
- less inclusive but still calculable in pQCD
- Factorisation
trade divergencies for universal measurable quantities

IRC safety

A generic (not fully inclusive) observable O is infrared and collinear safe if

$$
\begin{aligned}
& O\left(X ; p_{1}, \ldots, p_{n}, p_{n+1} \rightarrow 0\right) \rightarrow O\left(X ; p_{1}, \ldots, p_{n}\right) \\
& O\left(X ; p_{1}, \ldots, p_{n} \| p_{n+1}\right) \rightarrow O\left(X ; p_{1}, \ldots, p_{n}+p_{n+1}\right)
\end{aligned}
$$

Infrared and collinear safety demands that, in the limit of a collinear splitting, or the emission of an infinitely soft particle, the observable remain unchanged

IRC safety: proof

Cancellation of singularities in total cross

$$
\sigma_{t o t}=\int_{n}\left|M_{n}^{B}\right|^{2} d \Phi_{n}+\int_{n}\left|M_{n}^{V}\right|^{2} d \Phi_{n}+\int_{n+1}\left|M_{n+1}^{R}\right|^{2} d \Phi_{n+1}
$$ section (KLN)

A generic observable

$$
\begin{aligned}
\frac{d O}{d X} & =\int_{n}\left|M_{n}^{B}\right|^{2} O\left(X ; p_{1}, \ldots, p_{n}\right) d \Phi_{n} \\
& +\int_{n}^{\left|M_{n}^{V}\right|^{2} O\left(X ; p_{1}, \ldots, p_{n}\right) d \Phi_{n}+\int_{n+1}\left|M_{n+1}^{R}\right|^{2} O\left(X ; p_{1}, \ldots, p_{n}, p_{n+1}\right) d \Phi_{n+1}}
\end{aligned}
$$

In order to ensure the same cancellation existing in $\sigma_{\text {tot }}$, the definition of the observable must not affect the soft/collinear limit of the real emission term, because it is there that the real/virtual cancellation takes place

Drell-Yan: factorisation

Non fully inclusive process (hadrons in initial state): non cancellation of collinear singularities in PQCD

Same procedure used for renormalising the coupling: reabsorb the divergence into bare non-perturbative quantities, the parton probabilities (collinear factorisation)

The factorisation theorem

> Parton Distribution factorisation Function scale cross section
and (schematically)

$$
F(\mu)=F^{\text {Bare }}\left(1+\alpha_{s} P \log \frac{\mu^{2}}{\mu_{0}^{2}}\right) \longrightarrow \underset{\substack{\text { Batic School } 2021 \text { - Klapkalnciems, Latvia factor } \\ \text { universal }}}{\text { Tin }}
$$

Drell-Yan: NLO result

$$
\frac{d^{2} \hat{\sigma}_{q \bar{q} \rightarrow \gamma^{*} g}^{(1)}\left(z, Q^{2}, \mu^{2}\right)}{d Q^{2}}=\sigma_{0}\left(Q^{2}\right)\left(\frac{\alpha_{s}(\mu)}{\pi}\right)\left\{2\left(1+z^{2}\right)\left[\frac{\ln \left(1+z^{2}\right)}{1-z}\right]_{+} \longrightarrow \begin{array}{l}
\text { soft and } \\
\text { collinear } \\
\text { large log }
\end{array}\right.
$$

A prototype of QCD calculations: many finite terms but, more importantly, a few characteristic large logarithms

In many circumstances and kinematical situations the logs are much more important than the finite terms: hence in pQCD resummations of these terms are often phenomenologically more relevant than a full higher order calculation

Cascade

Factorisation

$$
\sigma^{p h y s}=F(\mu) \hat{\mathbf{\sigma}}(\mu)
$$

Evolution

$$
\frac{d}{d \ln \mu^{2}} \ln \sigma^{\text {phys }}=0 \Rightarrow \frac{d \ln \hat{\sigma}(\mu)}{\ln \mu^{2}}=-\frac{d \ln F(\mu)}{\ln \mu^{2}} \stackrel{t}{=}-\alpha_{s} P
$$

Resummation

Solution of evolution equations resums higher order terms Responsible for scaling violations (for instance in DIS structure functions)

DGLAP equations

[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi]

$$
\begin{aligned}
& \frac{d f_{q}(x, t)}{d t}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left[P_{q q}(z) f_{q}\left(\frac{x}{z}, t\right)+P_{q g}(z) f_{g}\left(\frac{x}{z}, t\right)\right] \\
& \frac{d f_{g}(x, t)}{d t}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left[P_{g q}(z) \sum_{i=q, \bar{q}} f_{i}\left(\frac{x}{z}, t\right)+P_{g g}(z) f_{g}\left(\frac{x}{z}, t\right)\right]
\end{aligned}
$$

The Altarelli-Parisi kernels control the evolution of the Parton Distribution Functions

Altarelli-Parisi kernels

[Altarelli-Parisi, I977,
Dokshitzer, 1977]

$$
\begin{aligned}
& P_{g g} \rightarrow 2 C_{A}\left\{\frac{x}{(1-x)_{+}}+\frac{1-x}{x}+x(1-x)\right\}+\delta(1-x)\left[\frac{11 C_{A}-2 n_{f}}{6}\right] \\
& P_{q q}(z) \rightarrow\left(\frac{1+z^{2}}{1-z}\right)_{+} \equiv \frac{1+z^{2}}{1-z}-\delta(1-z) \int_{0}^{1} d y\left(\frac{1+y^{2}}{1-y}\right) \\
& P_{q g}=\frac{1}{2}\left[z^{2}+(1-z)^{2}\right] \\
& P_{g q}(z)=C_{F} \frac{1+(1-z)^{2}}{z}
\end{aligned}
$$

Higher orders: Curci-Furmansky-Petronzio (I980), Moch,Vermaseren,Vogt (2004)

Altarelli-Parisi kernels: NLO

$$
\begin{aligned}
& P_{\mathrm{ps}}^{(1)}(x)=4 C_{F r y}\left(\frac{20}{9} \frac{1}{x}-2+6 x-4 \mathrm{H}_{0}+x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{56}{9}\right]+(1+x)\left[5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]\right) \\
& P_{\mathrm{qg}}^{(1)}(x)=4 C_{A} \eta_{\gamma}\left(\frac{20}{9} \frac{1}{x}-2+25 x-2 p_{\mathrm{qg}}(-x) \mathrm{H}_{-1,0}-2 p_{\mathrm{qg}}(x) \mathrm{H}_{1,1}+x^{2}\left[\frac{44}{3} \mathrm{H}_{0}-\frac{218}{9}\right]\right. \\
& \left.+4(1-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{0}+x \mathrm{H}_{1}\right]-4 \zeta_{2} x-6 \mathrm{H}_{0,0}+9 \mathrm{H}_{0}\right)+4 C_{F} n_{\mathrm{g}}\left(2 p _ { \mathrm { qg } } (x) \left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}\right.\right. \\
& \left.\left.-\zeta_{2}\right]+4 x^{2}\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}+\frac{5}{2}\right]+2(1-x)\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}-2 x \mathrm{H}_{1}+\frac{29}{4}\right]-\frac{15}{2}-\mathrm{H}_{0,0}-\frac{1}{2} \mathrm{H}_{0}\right) \\
& P_{\mathrm{gq}}^{(1)}(x)=4 C_{A} C_{F}\left(\frac{1}{x}+2 p_{\mathrm{gq}}(x)\left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}-\frac{11}{6} \mathrm{H}_{1}\right]-x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{44}{9}\right]+4 \zeta_{2}-2\right. \\
& \left.-7 \mathrm{H}_{0}+2 \mathrm{H}_{0,0}-2 \mathrm{H}_{1} x+(1+x)\left[2 \mathrm{H}_{0,0}-5 \mathrm{H}_{0}+\frac{37}{9}\right]-2 p_{\mathrm{gq}}(-x) \mathrm{H}_{-1,0}\right)-4 C_{F} r_{F}\left(\frac{2}{3} x\right. \\
& \left.-p_{\mathrm{gq}}(x)\left[\frac{2}{3} \mathrm{H}_{1}-\frac{10}{9}\right]\right)+4 C_{F}^{2}\left(p_{\mathrm{gq}}(x)\left[3 \mathrm{H}_{1}-2 \mathrm{H}_{1,1}\right]+(1+x)\left[\mathrm{H}_{0,0}-\frac{7}{2}+\frac{7}{2} \mathrm{H}_{0}\right]-3 \mathrm{H}_{0,0}\right. \\
& \left.+1-\frac{3}{2} \mathrm{H}_{0}+2 \mathrm{H}_{1} x\right) \\
& P_{\mathrm{gg}}^{(1)}(x)=4 C_{A \xi}\left(1-x-\frac{10}{9} p_{\mathrm{gg}}(x)-\frac{13}{9}\left(\frac{1}{x}-x^{2}\right)-\frac{2}{3}(1+x) \mathrm{H}_{0}-\frac{2}{3} \delta(1-x)\right)+4 C_{A}^{2}(27 \\
& +(1+x)\left[\frac{11}{3} \mathrm{H}_{0}+8 \mathrm{H}_{0,0}-\frac{27}{2}\right]+2 p_{\mathrm{gg}}(-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{-1,0}-\zeta_{2}\right]-\frac{67}{9}\left(\frac{1}{x}-x^{2}\right)-12 \mathrm{H}_{0} \\
& \left.-\frac{44}{3} x^{2} \mathrm{H}_{0}+2 p_{\mathrm{gg}}(x)\left[\frac{67}{18}-\zeta_{2}+\mathrm{H}_{0,0}+2 \mathrm{H}_{1,0}+2 \mathrm{H}_{2}\right]+\delta(1-x)\left[\frac{8}{3}+3 \zeta_{3}\right]\right)+4 C_{F} r_{y}\left(2 \mathrm{H}_{0}\right. \\
& \left.+\frac{2}{3} \frac{1}{x}+\frac{10}{3} x^{2}-12+(1+x)\left[4-5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]-\frac{1}{2} \delta(1-x)\right) \text {. }
\end{aligned}
$$

$$
\begin{gathered}
P_{a b}=\frac{\alpha_{s}}{2 \pi} P^{(0)}+ \\
\frac{\alpha_{s}^{2}}{16 \pi^{2}} P^{(1)}
\end{gathered}
$$

Curci, Furmanski \& Petronzio '80

Altarelli-Parisi kernels: NNLO

NNLO, $P_{a b}^{(2)}:$ Moch, Vermaseren \& Vogt '04

DGLAP evolution of PDFs

Evolution (i.e. higher momentum scale) produces more partons at small momentum fraction (because they lose energy by radiating)

As for the coupling, one can't predict PDF's values in PQCD, but only their evolution

Take-home points

- universal character of soft/collinear emission
- both real and virtual diagrams usually contribute to an observable (and are both needed to cancel divergencies)
- not everything is calculable. Restrict to IRC-safe observables and/or employ factorisation

