QCD, Higher Orders and Jets

Matteo Cacciari
LPTHE Paris and Université de Paris

Lecture 2: higher orders and Monte Carlo

AV Université

Ingredients and tools

- PDFs
- Hard scattering and shower
- Final state tools

(Higher order) calculations

What goes into them ?

Nomenclature

$$
P=\square \quad \begin{gathered}
\text { some } \\
P_{11}=\square+1 e=\square \\
\text { single } \\
\text { sore } \\
\text { correction }
\end{gathered}
$$

N.B.

$$
P+1 e \neq P+1 j e t
$$

\qquad
$e \stackrel{o r}{e \mathrm{eg}}$

$$
P+1 e=\square
$$

Contribertes to:

$$
P+1 j e t
$$

$$
P+X
$$

or \square $\left(\begin{array}{l}\text { if } e \text { is } \\ \text { integuated over) }\end{array}\right.$

Process P exact at LO, nothing else

 AdditionalQCD loops Additional
QCD loops

Additional as powers
(NB. At the matrix element squared level)

PS approx

Process $\mathrm{P}+\mathrm{lj}$ exact at LO, nothing else

Process P exact at NLO, $\mathrm{P}+\mathrm{lj}$ exact at LO, nothing else

Process P exact at NLO, $\mathrm{P}+\mathrm{lj}$ exact at LO, nothing else

Process P and $\mathrm{P}+1 \mathrm{j}$ exact at $\mathrm{NLO}, \mathrm{P}+2 \mathrm{j}$ at LO

Process P exact at NNLO, $\mathrm{P}+\mathrm{lj}$ exact at $\mathrm{NLO}, \mathrm{P}+2 \mathrm{j}$ at LO

Process P exact at NNLO, $\mathrm{P}+\mathrm{lj}$ exact at $\mathrm{NLO}, \mathrm{P}+2 \mathrm{j}$ at LO

Tools for the hard scattering

Can be divided in

- Integrators

- evaluate the (differential) cross section by integrating the calculation over the phase space, yielding (partly) inclusive quantities
- Produce weighted events (the weight being the value of the cross section)
- Calculations exist at LO, NLO, NNLO
- Generators
- generate fully exclusive configurations
- Events are unweighted (i.e. produced with the frequency nature would produce them)
- Easy at LO, get complicated when dealing with higher orders

Fixed order calculation

Born

$$
d \sigma^{B o r n}=B\left(\Phi_{B}\right) d \Phi_{B}
$$

NLO

$$
d \sigma^{N L O}=\left[B\left(\Phi_{B}\right)+V\left(\Phi_{B}\right)\right] d \Phi_{B}+R\left(\Phi_{R}\right) d \Phi_{R}
$$

Problem:
$V\left(\Phi_{\mathrm{B}}\right)$ and $\int \mathrm{Rd} \Phi_{\mathrm{R}}$ are divergent

Subtraction terms

An observable O is infrared and collinear safe if
$O\left(\Phi_{\mathrm{R}}\left(\Phi_{\mathrm{B}}, \Phi_{\mathrm{rad}}\right)\right) \rightarrow O\left(\Phi_{\mathrm{B}}\right)$
Soft or collinear limit

One can then write, with $R \rightarrow C$ in the soft/coll limit,
This integration
performed analytically

$$
\langle O\rangle=\int\left[B\left(\Phi_{B}\right)+\widehat{V\left(\Phi_{B}\right)+\int C\left(\Phi_{R}\right) d \Phi_{r a d}}\right] O\left(\Phi_{B}\right) d \Phi_{B}
$$

This (or a similar) cancellation will always be implicit in all subsequent equations

Parton Shower Monte Carlo

Exploit factorisation property of soft and collinear radiation

Factorisation $\sigma_{n} \quad \sigma_{n+1}$

$$
\mathrm{d} \sigma_{n+1}\left(\Phi_{n+1}\right)=\mathcal{P}\left(\Phi_{\mathrm{rad}}\right) \mathrm{d} \sigma_{n}\left(\Phi_{n}\right) \mathrm{d} \Phi_{\mathrm{rad}}
$$

Emission probability

$$
\mathcal{P}\left(\Phi_{\mathrm{rad}}\right) \mathrm{d} \Phi_{\mathrm{rad}} \approx \frac{\alpha_{\mathrm{S}}(q)}{\pi} \frac{\mathrm{d} q}{q} P(z, \phi) \mathrm{d} z \frac{\mathrm{~d} \phi}{2 \pi}
$$

Iterate emissions to generate higher orders (in the soft/collinear approximation)

Parton Shower MC

Based on the iterative emission of radiation described in the soft-collinear limit

$d \sigma^{(M C)}\left(\Phi_{R}\right) d \Phi_{R}=B\left(\Phi_{B}\right) d \Phi_{B} \mathcal{P}\left(\Phi_{\text {rad }}\right) d \Phi_{\text {rad }}$

Pros: soft-collinear radiation is resummed to all orders in pQCD
Cons: hard large-angle radiation is missing

Overall accuracy will be leading log (LL) for the radiation, and leading order (i.e. Born) for the integrated cross sections

Sudakov form factor

A key ingredient of a parton shower Monte Carlo:

Sudakov form factor $\Delta\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$

Probability of no emission between the scales t_{1} and t_{2}

Example:

- decay probability per unit time of a nucleus $=\mathrm{C}_{\mathrm{N}}$
- Sudakov form factor $\Delta\left(\mathrm{t}_{0}, \mathrm{t}\right)=\exp \left(-\mathrm{ch}_{\mathrm{N}}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)$

Probability that nucleus does not decay between t_{0} and t

Sudakov form factor: derivation

Decay probability per unit time $=\frac{d P}{d t}=c_{N}$

Probability of no decay between t_{0} and $\mathrm{t}=\Delta\left(\mathrm{t}_{0}, \mathrm{t}\right)$
\Rightarrow Probability of decay between t_{0} and $\mathrm{t}=\mathrm{I}-\Delta(\mathrm{t}, \mathrm{t})$
[with $\left.\Delta\left(\mathrm{t}_{0}, \mathrm{t}_{0}\right)=\mathrm{I}\right]$
[unitarity: either you decay or you don't]

Decay probability per unit time at time \mathbf{t} can be written in two ways:

$$
\begin{aligned}
& \text { 1. } P^{\mathrm{dec}}(t)=\frac{d}{d t}\left(1-\Delta\left(t_{0}, t\right)\right)=-\frac{d \Delta\left(t_{0}, t\right)}{d t} \\
& \text { 2. } P^{\text {dec }}(t)=\Delta\left(t_{0}, t\right) \frac{d P}{d t} \quad \begin{array}{l}
\text { No decay until t, probability per } \\
\text { unit time to decay at } \mathrm{t}
\end{array}
\end{aligned}
$$

Sudakov form factor: derivation

Equating the two expressions for $\operatorname{Pdec}(\mathrm{t})$ we get

$$
-\frac{d \Delta\left(t_{0}, t\right)}{d t}=\Delta\left(t_{0}, t\right) \frac{d P}{d t}
$$

We can solve the differential equation using $d P / d t=c_{N}$ and we get

$$
\Delta\left(\mathrm{t}_{0}, \mathrm{t}\right)=\exp \left(-\mathrm{c}_{\mathrm{N}}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)
$$

If the decay probability depends on t (and possibly other variables, call them z) this generalises to

$$
\Delta\left(t_{0}, t\right)=\exp \left(-\int_{t_{0}}^{t} d t^{\prime} \int d z c_{N}\left(t^{\prime}, z\right)\right)
$$

Sudakov form factor in QCD

Emission probability

$$
\mathcal{P}\left(\Phi_{\mathrm{rad}}\right) \mathrm{d} \Phi_{\mathrm{rad}} \approx \frac{\alpha_{\mathrm{S}}(q)}{\pi} \frac{\mathrm{d} q}{q} P(z, \phi) \mathrm{d} z \frac{\mathrm{~d} \phi}{2 \pi}
$$

Sudakov form factor = probability of no emission from large scale q_{1} to smaller scale q_{2}

$$
\Delta_{\mathrm{S}}\left(q_{1}, q_{2}\right)=\exp \left[-\int_{q_{2}}^{q_{1}} \frac{\alpha_{\mathrm{S}}(q)}{\pi} \frac{\mathrm{d} q}{q} \int_{z_{0}}^{1} P(z) \mathrm{d} z\right]
$$

Conventions for Sudakov form factor

$$
\begin{aligned}
& \Delta_{\mathrm{S}}\left(q_{1}, q_{2}\right)=\exp \left[-\int_{q_{2}}^{q_{1}} \frac{\alpha_{\mathrm{S}}(q)}{\pi} \frac{\mathrm{d} q}{q} \int_{z_{0}}^{1} P(z) \mathrm{d} z\right] \\
& \Delta\left(p_{\mathrm{T}}\right)=\exp \left[-\int_{p_{\mathrm{T}}}^{Q} \frac{\frac{\mathrm{~d} \sigma^{(\mathrm{MC})}}{\mathrm{d} y \mathrm{~d} p_{\mathrm{T}}^{\prime}}}{\frac{\mathrm{d} \sigma^{(\mathrm{B})}}{\mathrm{d} y}} \mathrm{~d} p_{\mathrm{T}}^{\prime}\right]
\end{aligned}
$$

$$
\Delta_{R}\left(p_{T}\right)=\exp \left[-\int \frac{R}{B} \Theta\left(k_{T}\left(\Phi_{R}\right)-p_{T}\right) d \Phi_{r a d}\right]
$$

$$
\Delta_{R}\left(p_{T}\right)=\exp \left[-\int_{p_{T}} \frac{R}{B} d \Phi_{r a d}\right]
$$

Full expression,with details of softcollinear radiation probability

Dropped upper limit, taken implicitly to be the hard scale Q

Introduced suffix (R in this case) to indicate expression used to described radiation

Integration boundaries only implicitly indicated

PS example: Higgs plus radiation

Leading order.
 No radiation, Higgs PT $=0$

With emission of radiation Higgs pt $\neq 0$

Description of hardest emission in PS MC (either event is generated)

Toy shower for the Higgs PT

Gavin Salam has made public a 'toy shower' that generates the Higgs transverse momentum via successive emissions controlled by the Sudakov form factor

$$
\Delta\left(p_{T}\right)=\exp \left[-\frac{2 \alpha_{s} C_{A}}{\pi} \ln ^{2} \frac{p_{T, \max }^{2}}{p_{T}^{2}}\right]
$$

You can get the code at https://github.com/gavinsalam/zuoz2016-toy-shower

NB. In order to get more realistic results you need at least at the code in v2

Shower unitarity

It holds

$$
\begin{aligned}
& \quad \int_{0}^{Q}\left[\delta\left(p_{\mathrm{T}}\right) \Delta\left(Q_{0}\right)+\frac{\Delta\left(p_{\mathrm{T}}\right) \frac{\mathrm{d} \sigma^{(\mathrm{MC})}}{d y \mathrm{~d} p_{\mathrm{T}}}}{\frac{\mathrm{~d} \sigma^{(\mathrm{B})}}{\mathrm{d} y}}\right] \mathrm{d} p_{\mathrm{T}}=\Delta\left(Q_{0}\right)+\int_{Q_{0}}^{Q} \frac{\mathrm{~d} \Delta\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathrm{~d} p_{\mathrm{T}}=\begin{array}{r}
\Delta(Q)=1 \\
\text { Shower } \\
\text { unitarity }
\end{array}
\end{aligned}
$$

$$
\int_{0}^{Q} \mathrm{~d} p_{\mathrm{T}} \frac{\mathrm{~d} \sigma^{(\mathrm{MC})}}{\mathrm{d} y \mathrm{~d} p_{\mathrm{T}}}=\frac{\mathrm{d} \sigma^{(\mathrm{B})}}{\mathrm{d} y} \int_{0}^{Q}\left[\delta\left(p_{\mathrm{T}}\right) \Delta\left(Q_{0}\right)+\frac{\Delta\left(p_{\mathrm{T}}\right) \frac{\mathrm{d} \sigma^{(\mathrm{MC})}}{\mathrm{d} y \mathrm{~d} p_{\mathrm{T}}}}{\frac{\mathrm{~d} \sigma^{(\mathrm{B})}}{\mathrm{d} y}}\right] \mathrm{d} p_{\mathrm{T}}=\frac{\mathrm{d} \sigma^{(\mathrm{B})}}{\mathrm{d} y}
$$

A parton shower MC correctly reproduces the Born cross section for integrated quantities

PS MC in different notation

Writing the real cross section as described by the Monte Carlo (i.e. with the parton shower) simply as R^{MC}, we can rewrite

$$
\begin{aligned}
d \sigma^{M C} & =B d \Phi_{B}\left[\Delta_{M C}\left(Q_{0}\right)+\Delta_{M C}\left(p_{T}\right) \frac{R^{M C}}{B} d \Phi_{r a d}\right] \\
& \text { with } \quad \Delta_{M C}\left(p_{T}\right)=\exp \left[-\int_{p_{T}} \frac{R^{M C}}{B} d \Phi_{r a d}\right]
\end{aligned}
$$

as our Master Formula for a Parton Shower Monte Carlo.

Thanks to the shower unitarity, it holds

$$
\Rightarrow \int d \sigma^{M C}=\int B d \Phi_{B}=\sigma^{L O}
$$

Matrix Element corrections

In a PS Monte Carlo $\quad R^{(M C)}\left(\Phi_{R}\right)=B\left(\Phi_{B}\right) \mathcal{P}\left(\Phi_{\text {rad }}\right)$

Replace the MC description of radiation with the correct one:

$$
\mathcal{P}\left(\Phi_{\text {rad }}\right) \rightarrow \frac{R}{B}
$$

The Sudakov becomes
$\Delta\left(p_{\mathrm{T}}\right)=\exp \left[-\int_{p_{\mathrm{T}}}^{Q} \frac{\frac{\mathrm{~d} \sigma^{(\mathrm{MC})}}{\frac{\mathrm{d} \mathrm{d} p_{\mathrm{T}}^{\prime}}{\mathrm{d} \sigma^{(\mathrm{B})}}} \mathrm{d} y p_{\mathrm{T}}^{\prime}}{} \mathrm{d}\right] \Delta_{R}\left(p_{T}\right)=\exp \left[-\int \frac{R}{B} \Theta\left(k_{T}\left(\Phi_{R}\right)-p_{T}\right) d \Phi_{r a d}\right]$ and the x-sect formula for the hardest emission

$$
d \sigma^{M E C}=B d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right]
$$

Matrix Element corrections

Beyond PS MC

We wish to go beyond a Parton Shower (+MEC) Monte Carlo, so that

- we can successfully interface matrix elements for multi-parton production with a parton shower
- we can successfully interface a parton shower with a NLO calculation

It's a quest for exactness of ever more complex processes

Process P exact at LO, the rest PS approximation

Process P and $P+l j$ exact at $L O$, the rest $P S$ approximation

 [PS+MEC or PS from ME for $\mathrm{P}+\mathrm{le}$]Additional
Qs powers

Additional QCD loops

Process P, P+lj, P+2j, ... exact at LO, the rest PS approx.

 [PS+Matrix Element (CKKW, MLM,....)]Additional
Qs powers

Process P exact at NLO, the rest PS approximation [PS+NLO (MC@NLO, POWHEG,...)]
 Additional Qs powers

Additional
QCD loops

Process P exact at $N L O, P+I j, P+2 j, \ldots$ at $L O$, the rest $P S$ $[P S+N L O+\underset{\text { Additional }}{\text { ME }}(\operatorname{MENLOPS}, \ldots)]_{\left[\text {Hamilton, }{ }^{(2 s s o n}{ }^{\prime} 10\right]}$ Qs powers

Process $P, P+l j, P+2 j, \ldots$. exact at NLO, the rest PS [PS+NLO+ME ${ }_{\text {NLo }}$ (MEPS@NLO,...)]

Additional
as powers

Additional QCD loops

Absent
PS approx
Exact

MCs at NLO

Existing 'MonteCarlos at NLO':

\rightarrow MC@NLO [Frixione and Webber, 2002]
-POWHEG [Nason, 2004]
NB.MC@NLO is a code, POWHEG is a method

Evolving into (semi)automated forms:

- The POWHEG BOX ${ }_{\text {[powhegbox.mib.inf.it 2010] }}$
- $\mathrm{aMC} @ \mathrm{NLO}$ [amcatnlo.cern.ch 2011]

MCs at NLO

Matrix-element corrected shower Monte Carlos still have leading order accuracy for the total rates

$$
\begin{gathered}
d \sigma^{M E C}=B d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right] \quad \text { and } \quad \Delta_{R}\left(Q_{0}\right)+\int \Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}=1 \\
\Rightarrow \int d \sigma^{M E C}=\int B d \Phi_{B}=\sigma^{L O}
\end{gathered}
$$

We want to do better, and merge PS and NLO, so that

$$
\int d \sigma^{P S+N L O}=\int(B+V) d \Phi_{B}+\int R d \Phi_{R}=\sigma^{N L O}
$$

MC@NLO

Idea: remove from the NLO the terms that are already generated by the parton shower (NB.MC-specific)

$$
d \sigma^{M C @ N L O}=\bar{B}_{M C} d \Phi_{B}\left[\Delta_{M C}\left(Q_{0}\right)+\Delta_{M C}\left(p_{T}\right) \frac{R^{M C}}{B} d \Phi_{r a d}\right]+\underline{\left[R-R^{M C}\right] d \Phi_{R}}
$$

It is easy to see that, as desired,

$$
\int d \sigma^{M C @ N L O}=\int d \sigma^{N L O}
$$

POWHEG

Idea: generate hardest radiation first, then pass event to MC for generation of subsequent, softer radiation

$$
\begin{aligned}
& d \sigma^{P O W H E G}=\bar{B} d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right] \\
& \bar{B}=B+\left[V+\int R d \Phi_{\text {rad }}\right] \\
& \text { NLO x-sect }
\end{aligned}
$$

It is easy to see that, as desired,

$$
\int d \sigma^{P O W H E G}=\int d \sigma^{N L O}
$$

Large Рт enhancement in POWHEG

The 'naive' formulation for POWHEG is

$$
d \sigma^{P O W H E G}=\bar{B} d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right]
$$

In this form $\bar{B} d \Phi_{B}$ provides the NLO K-factor (order I+O($\left.\alpha_{\mathrm{s}}\right)$), but also associates it to large pt radiation, where the calculation is already $\mathrm{O}\left(\alpha_{s}\right)$ (but only LO accuracy).

This generates an effective (but not necessarily correct) $O\left(\alpha_{s}{ }^{2}\right)$ term (i.e.
NNLO for the total cross section)
OK because beyond nominal accuracy, but one may feel uncomfortable with such large numerical factors

Modified POWHEG

The 'problem' with the naive POWHEG comes from the hard radiation being enhanced by spurious higher orders. In order to suppress this effect, we split

$$
R=R^{S}+R^{F} \quad R^{S} \equiv \frac{h^{2}}{h^{2}+p_{T}^{2}} R \quad R^{F} \equiv \frac{p_{T}^{2}}{h^{2}+p_{T}^{2}} R
$$

Contains
singularities

Regular in
small PT region

Modified POWHEG

In the $h \rightarrow \infty$ limit the exact NLO result is recovered

Comparisons

$$
\begin{gathered}
d \sigma^{M C}=B d \Phi_{B}\left[\Delta\left(Q_{0}\right)+\Delta\left(p_{T}\right) \frac{R^{M C}}{B} d \Phi_{r a d}\right] \\
d \sigma^{M E C}=B d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right] \\
d \sigma^{N L O}=[B+V] d \Phi_{B}+R d \Phi_{R} \\
d \sigma^{M C @ N L O}=\bar{B}_{M C} d \Phi_{B}\left[\Delta_{M C}\left(Q_{0}\right)+\Delta_{M C}\left(p_{T}\right) \frac{R^{M C}}{B} d \Phi_{r a d}\right]+\left[R-R^{M C}\right] d \Phi_{R} \\
d \sigma^{P O W H E G}=\bar{B}^{S} d \Phi_{B}\left[\Delta_{S}\left(Q_{0}\right)+\Delta_{S}\left(p_{T}\right) \frac{R^{S}}{B} d \Phi_{r a d}\right]+R^{F} d \Phi_{R}
\end{gathered}
$$

POWHEG approaches MC@NLO if Rs \rightarrow R $^{\text {MC }}$

Take home messages

Monte Carlos in QCD are complicated. I only scratched the surface here and gave almost no details. If interested, check lectures of real MC people (Sjostrand, Skands, Nason, Maltoni, Frixione, Krauss, Richardson, Webber,.....)

Monte Carlos exploit property of universality of soft/collinear radiation to resum its effects to all orders (within some approximations)

Effects of multi-parton, hard, large-angle radiation can be included via exact calculations and proper (and delicate) mergings

The result is a detailed description of the final state, covering as much phase space as possible.Accurate descriptions of data are usually achieved

