Trapping of neutral molecules by the beam electromagnetic field

G. Franchetti, GSI F. Zimmermann CERN, M.A. Rehman KEK

Topics

- Forces and torques on molecules with dipole moments
- Dynamics of molecules Trapping
- Enhancement of local densities
- Summary
- Outlooks

Dynamics of charged particles

$$\frac{d\vec{p}}{dt} = q\vec{E} + q\vec{v} \times \vec{B}$$

The dynamics is determined by the initial condition of the particle, and by the electromagnetic field

Dynamics of neutral molecules

Thermodynamics \rightarrow Maxwell-Boltzmann velocity distribution \rightarrow Temperature Properties: Collisions, Mean free path, Impingement rate, Pressure

G. Franchetti

At first sight

Charged molecule/particle

Neutral molecule/particle

No forces on the molecule/particle

Structure of molecules

Vibrational state

Characteristic molecular vibrational frequency \rightarrow very large

Molecules and electric fields

 $\begin{cases} \vec{\tau} = \vec{p} \times \vec{E} \\ \vec{F}_t = (\vec{p} \cdot \nabla) \vec{E} \end{cases}$

← Torque

 \leftarrow Force on the center of mass

Electric dipole moment

Dipole moment and magnetic fields

Torque

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Dipole moment and magnetic fields

If the magnetic field is not uniform a force on the center of mass is exerted

 $\vec{F}_t = (\vec{\mu} \cdot \nabla)\vec{B}$

Dynamics of neutral molecules

 $\begin{cases} \vec{F}_t = (\vec{\mu} \cdot \nabla)\vec{B} + (\vec{p} \cdot \nabla)\vec{E} \\ \vec{\tau} = \vec{p} \times \vec{E} + \vec{\mu} \times \vec{B} \end{cases}$

In general:

- 3 coordinates for the position of the center of mass
- 3 coordinates for the molecule "orientation"
- 3 velocities for the center of mass
- 3 "velocities" for the orientation

Molecules of interest

Molecule	EDM [D]	MDM [BM]	M [amu]
H ₂ O	0.39	0	18
$\overline{O_2}$	0	2.8	32
cō	0.025	0	28
N_2	0	0	28
\overline{CO}_2	0	0	4 4

[D] = Debye, 1 D ≈ 0.21 eÅ with e the electron charge and 1 Å = 0.1 nm [BM] = Bohr magneton, its value is 9.27 × 10E–24 J/T

Dipole alignment and intrinsic time scale

The dipole tends to align to the field, and has a fast frequency of oscillation

$$\theta'' + \omega_E^2 \theta = 0 \qquad \omega_E = \sqrt{\frac{pE}{I_i}}$$

Assumption: the dipole as aligned to the local field

Electromagnetic beam field

For molecules with dipole alignment the force on the center of mass is the following

Trapping temperature and Forces

Oscillations around the equilibrium radius

Time scales

Vibrational

Very fast

Oscillation around field

Oscillation around equilibrium radius

$$\omega_E = \sqrt{\frac{pE}{I}} \qquad \omega_E^2 \simeq \ln\left(\frac{\pi}{2}\right) \frac{k_b}{mL^2} T_p^*$$
$$\omega \sim \sqrt{\frac{e}{20}} \frac{k_b T_p^*}{M\sigma^2}$$

For a water molecule, H₂O, characterized by $M = 3 \times 10^{-26}$ kg and $p = 6.2 \times 10^{-30}$ C m, and a beam with $\sigma = 3 \times 10^{-4}$ m and I = 1 A, we find $\omega = 11189$ rad/s. Hence, in this case, the frequency of oscillation around the equilibrium radius r_e is $f = \omega/(2\pi) = 1780$ Hz, which, for the LHC, is of the order of the fractional betatron frequency.

Radial density evolution

23.04.21

Density enhancement depends critically from T/T $_{p}^{*}$

23.04.21

29

Density enhancement depends critically from T/T $^*_{\mu}$

23.04.21

Agglomeration or clustering

Gas of agglomerates or clusters

In thermal equilibrium, but have now lower temperature as the agglomerates have large mass

Cluster-cluster aggregation with dipolar interactions

L978

Letter to the Editor

Figure 1. A typical cluster of 128 particles obtained without taking into account dipolar interactions nor the orientational dipole relaxation.

Paulo M Mors, Robert Botet and Rimi Jullien, Phys. A: Math. Gen. 20(1987)L975-L980

No evident studies of aggregation at Accelerators cryogenic temperature

Particle-cluster aggregation with dipalar interactions R. Pastor-Satorras and J. M. Ru PRE, 51,6 1995

Dipole-Dipole Interactions of Charged- Magnetic Grains Jonathan Perry, Lorin S. Matthews, and Truell W. Hyde, Member, IEEE \lor

Figure 1. Normalized cluster magnetic moment as a function of N, the number of monomets in an aggregate. The fit line shows an exponential increase $\mu = N^{6.5}$.

Summary

- Molecules with a magnetic dipole moment oscillate around the transverse center of the particle beam, whereas molecules with an electric dipole moment oscillate around a radial equilibrium position located at the edge of the beam.
- Description of the features of the dynamics as function of a trapping temperature T*
- Thermal motion of neutral molecules will be perturbed by the electromagnetic field of the beam, → trapping and density enhancement of such particles in the vicinity of the beam for T/T* small.
- Derived the fraction of molecules, with either electric or magnetic dipole moment, trapped by the beam field, as a function of T/T*
- Missing: studies of the effect on multi-bunches → very hard because of small-large time scale is problematic for simulations

Outlook \rightarrow case for agglomeration formation studies

- Observations of beam loss and beam instabilities in the 2017 and 2018 LHC runs cannot be explained by the motion of single neutral molecules, which, at a temperature of 5 K, would mostly not be trapped by the field of the beam.
- The trapping of larger neutral flakes, or agglomerates of a large number of polar water or paramagnetic oxygen molecules, is possible.
- If flakes had been formed in the LHC, this could well have contributed to the magnitude of the observed phenomena.
- Flakes formation? degraded situation encountered after a beam screen warm-up from about 5 to 80–90 K ("regeneration") around the LHC location 16L2 executed in August 2017, since the higher temperature during the warm-up could have facilitated the formation of flakes.
 Hypothesis open to investigation.
- Tools and methodologies developed for modeling aggregation phenomena may serve as a starting point for future studies of cluster formation and flake characteristics in accelerator beam vacuum systems.

Outlook \rightarrow case for advanced beam dynamics studies

- Once a molecule or a flake comes close to the beam it may be ionized → dynamics is radically altered.
- Larger flake staying near the core of the beam would heat up, be charged, and then either evaporate or melt and explode, leaving behind a localized high-density mixture of ions, electrons, and molecules or atoms.
- A software package is under development at CERN, to study the interaction of such a complex mixture of species with the LHC proton beam → Lotta Mether
- Trapping and accumulation of individual neutral molecules or flakes of molecules in the vicinity of the beam enhances the effective gas density and can aggravate ion-induced beam instabilities
- The effect considered is particularly important in cryogenic vacuum systems, for high beam currents or for small beam sizes. Consequently, it will become more important for future generations of accelerators.