

Observation of an inactive region in irradiated silicon diodes

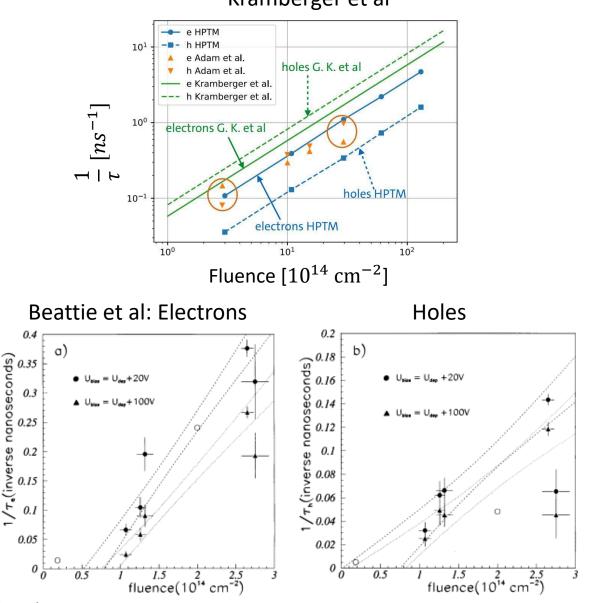
E. Garutti, M. Hajheidari, R. Klanner, <u>O. Murzewitz</u>, J. Schwandt

38th RD50 workshop

23.06.2021

SPONSORED BY THE

Federal Ministry of Education and Research


Kramberger et al

• Trapping times important for accurate prediction of detector performance

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

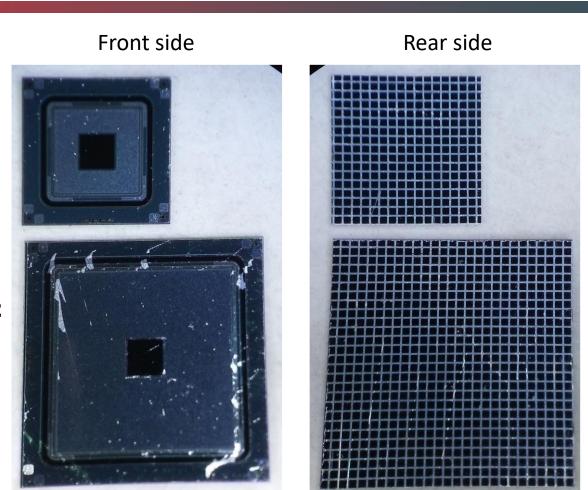
- Verify simulation data and modify sensor designs
- How much irradiation can a detector tolerate
- Results of determined trapping times for electron and holes $(\frac{1}{\tau_e}, \frac{1}{\tau_h})$
 - Laser light (Kramberger et al <u>Link</u>): $\frac{1}{\tau_e} < \frac{1}{\tau_h}$
 - Alpha particles (Beattie et al Link): $\frac{1}{\tau_e} > \frac{1}{\tau_h}$
 - Hamburg Penta Trap Model (HPTM) simulation: $\frac{1}{\tau_e} > \frac{1}{\tau_h}$
- Published trapping time measurments contradict each other

23.06.2021

UH

oscar.murzewitz@desy.de

- n⁺-p-p⁺ configuration by Hamamatsu
- 150 μm active thickness


Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

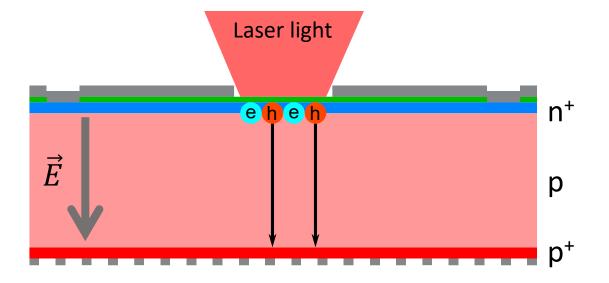
- Boron doped $N_A \approx 4.5 \times 10^{12} \mathrm{cm}^{-3}$
- Full depletion voltage $V_{dep} \approx 75 \text{ V}$
- Front: n⁺-p, Rear: p⁺-p
- Active area $\approx 2.5 \times 2.5 \text{ mm}^2 \text{ or } 5 \times 5 \text{ mm}^2$
- Irradiated in Karlsruhe¹
 - 23 MeV protons, $\kappa = 2.20$
 - Three diodes irradiated with

$$\Phi_{eq} = 2.0 \times 10^{15} \text{cm}^{-2},$$

8.6 × 10¹⁵ cm⁻²,
1.2 × 10¹⁶ cm⁻²

 κ : hardness factor

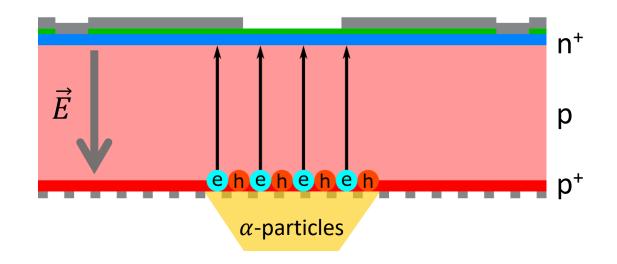
1: Irradiation Center Karlsruhe, ZAG Cyclotron AG


UH

Transient Current Technique (TCT)

Front side laser light illumination of a fully depleted diode

- Used to investigate signal of sensors
- Pulsed red-light laser
 - 660 nm and 1 kHz repetition rate
- ²⁴¹Am source
 - 320 kBq activity, $E_0 = 5.4 \text{ MeV}$
- Both sources have attenuation length of few μm in silicon
- Signal induced mainly by one charge carrier type



Transient Current Technique (TCT)

Rear side α -particle illumination of a fully depleted diode

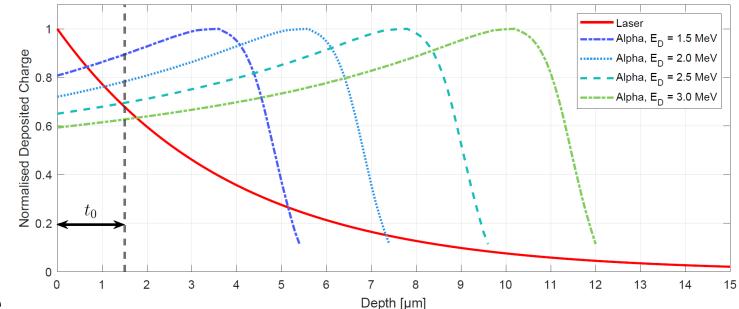
- Used to investigate signal of sensors
- Pulsed red-light laser
 - 660 nm and 1 kHz repetition rate
- ²⁴¹Am source
 - 320 kBq activity, $E_0 = 5.4 \text{ MeV}$
- Both sources have attenuation length of few μm in silicon
- Signal induced mainly by one charge carrier type

Charge Deposition Profiles

• Laser light

DER FORSCHUNG | DER LEHRE | DER BILDUNG

UH


- Exponential attenuation
- Deposit most charge at surface
- Alpha particles

Universität Hamburg

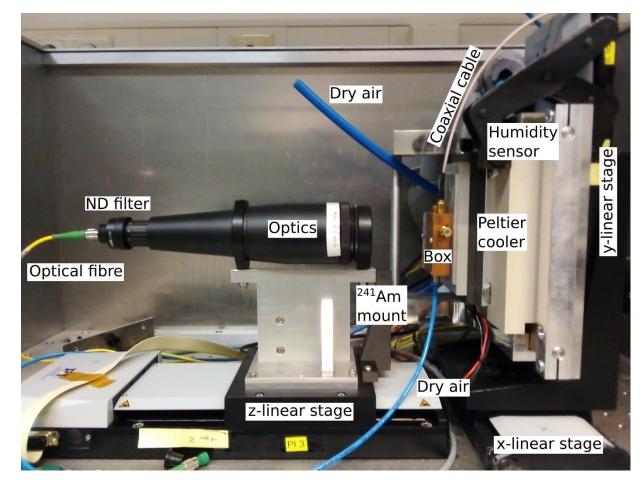
- Bragg curves
- Deposit most charge at end of particle range
- Using both sources enables the study of different depths in silicon

 E_D : energy of α -particles at the active region of the diode (n⁺ or p⁺ implant)

Absorption profiles of light and α -particles in silicon at -20 °C

The smaller the α -particle energy, i.e. E_D the more charge is deposited at the surface

23.06.2021

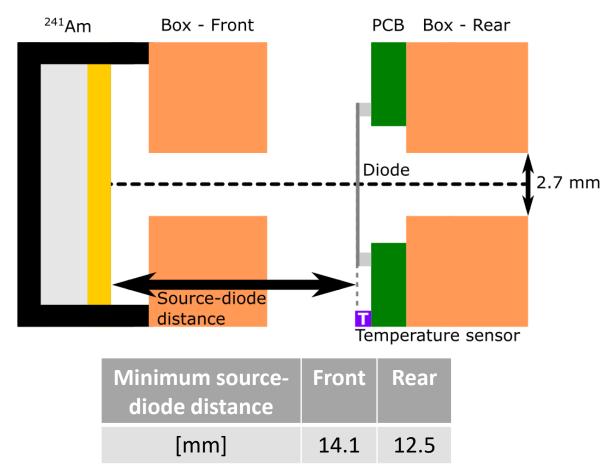

TCT Setup

TCT measurement setup

- Setup can be cooled down and flushed with dry air
- 3 linear stages position the diode
- Amplifier with gain of 100
- Digital Oscilloscope
 - 2.5 GHz bandwidth
 - 40 GS/s sampling rate

Measurement conditions

- Relative humidity below 4 %
- Temperature: -20 °C


TCT Setup

- Setup can be cooled down and flushed with dry air
- 3 linear stages position the diode
- Amplifier with gain of 100
- Digital Oscilloscope
 - 2.5 GHz bandwidth
 - 40 GS/s sampling rate

Measurement conditions

- Relative humidity below 4 %
- Temperature: -20 °C

Layout inside box with alpha-source

Current Transient

Rear side laser light illumination of a non-irradiated diode at 200 V and -20 °C

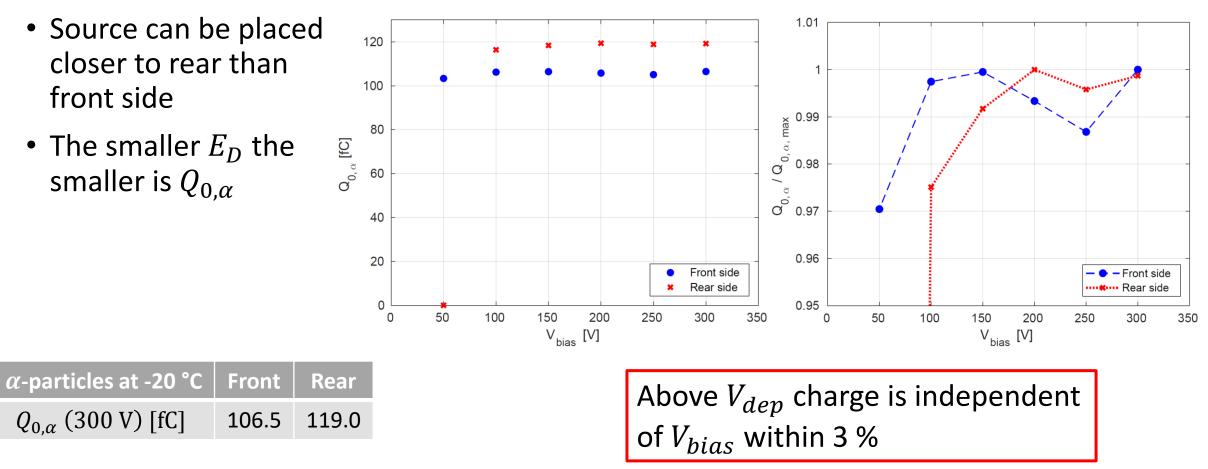
- Average of 512 waveforms
- Voltage shift from baseline
- Signal reflection at amplifier
- Non-irradiated diodes
 - Reverse bias: 50 V 300 V
- Irradiated diodes
 - Reverse bias: 300 V 800 V

With baseline correction 0.5 Without baseline correction 0.4 0.3 ≥ ^{0.3} > → _{0.2} t_o∎ 0.1 Reflection Pre-pulse region Gate length 10 15 20 25 30 35 50 55 60 65 70 75 80 85 100 t [ns]

• Collected Charge of a diode

 $Q_m = \int_{t_0}^{t_1} \frac{V_{tr}(t)}{50 \ \Omega \cdot 100} dt$, $t_1 - t_0 = 20 \text{ ns}$

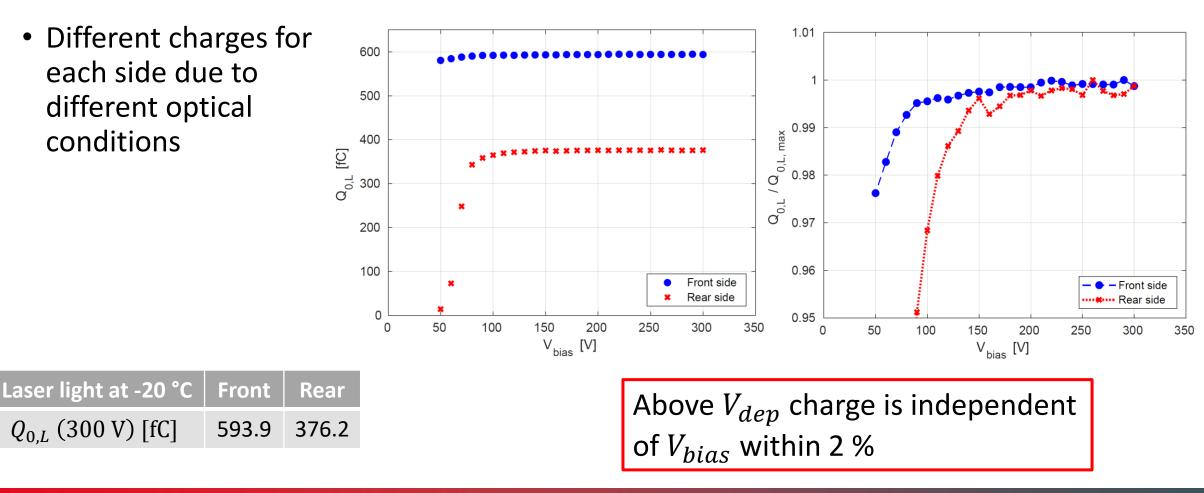
Collected charge = integral of baseline corrected transient


Charge Collection – α -particles

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Universität Hamburg

UΗ


<u>1 M</u>

Charge collection of non-irradiated diode at -20 °C and minimum source-diode distance

Charge Collection – Laser Light

Charge collection of non-irradiated diode at -20 °C

Charge Collection Efficiency (CCE)

• CCE for laser light measurements

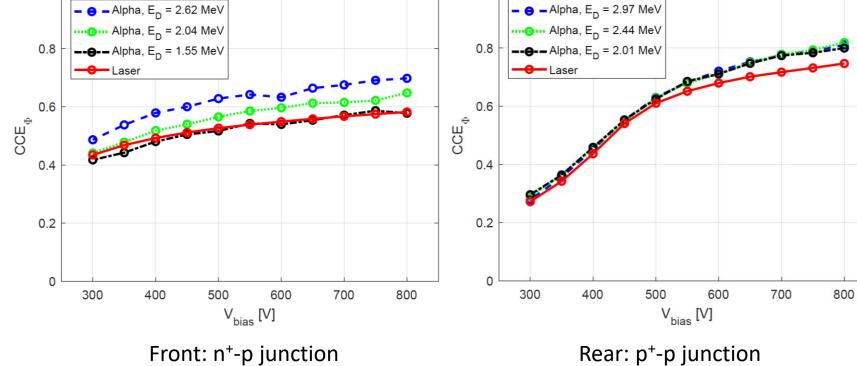
$$CCE_{\Phi,L} = \frac{Q_{\Phi,L}(V_{bias})}{Q_{0,L}}$$

• CCE for α -particle measurements

$$CCE_{\Phi,\alpha} = \frac{Q_{\Phi,\alpha}(V_{bias}, E_D)}{Q_{0,\alpha}(E_D)}$$

• Assumption: CCE of non-irradiated diode is 100 %

CCE Results


Front side illumination at -20 °C

 $\Phi_{eq} = 2.0 \times 10^{15} \text{cm}^{-2}$

Rear side illumination at -20 °C

Front side

- $CCE_{\Phi,\alpha}$ decreases with decreasing E_D
- $CCE_{\Phi,\alpha} \approx CCE_{\Phi,L}$ at $E_D = 1.55 \text{ MeV}$

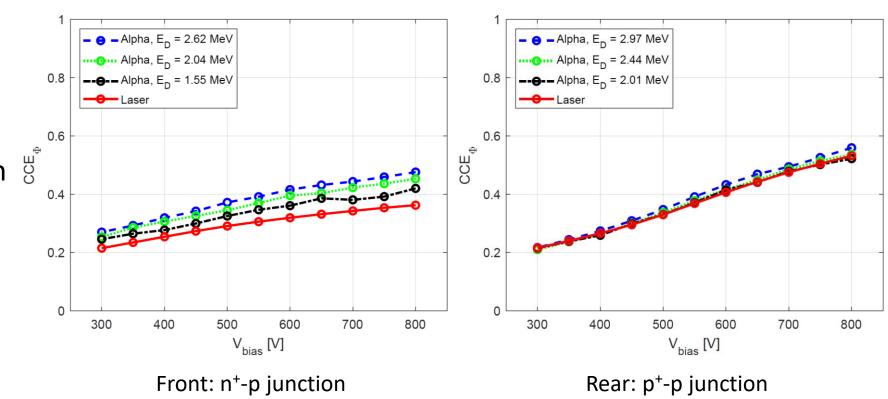
Rear side

• $CCE_{\Phi,\alpha}$ is not a function of E_D

CCE Results

Front side illumination at -20 °C

 $\Phi_{eq} = 8.6 \times 10^{15} \text{cm}^{-2}$


Rear side illumination at -20 °C

Front side

- $CCE_{\Phi,\alpha}$ decreases with decreasing E_D
- $CCE_{\Phi,\alpha}$ is larger than $CCE_{\Phi,L}$ for all E_D

Rear side

- $CCE_{\Phi,\alpha}$ is not a function of E_D
- $CCE_{\Phi,\alpha} \approx CCE_{\Phi,L}$

CCE Results

Front side illumination at -20 °C

$\Phi_{eq} = 1.2 \times 10^{16} \text{cm}^{-2}$

Rear side illumination at -20 °C

Front side

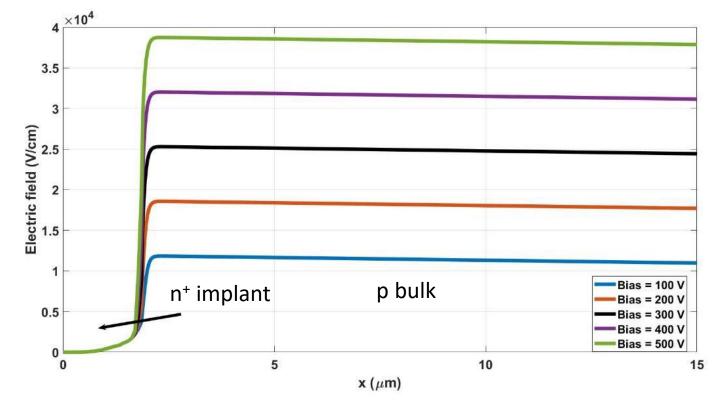
- $CCE_{\Phi,\alpha}$ barely changes with E_D
- $CCE_{\Phi,\alpha}$ is larger than $CCE_{\Phi,L}$ for all E_D

- $CCE_{\Phi,\alpha}$ is not a function of E_D
- $CCE_{\Phi,\alpha} \approx CCE_{\Phi,L}$

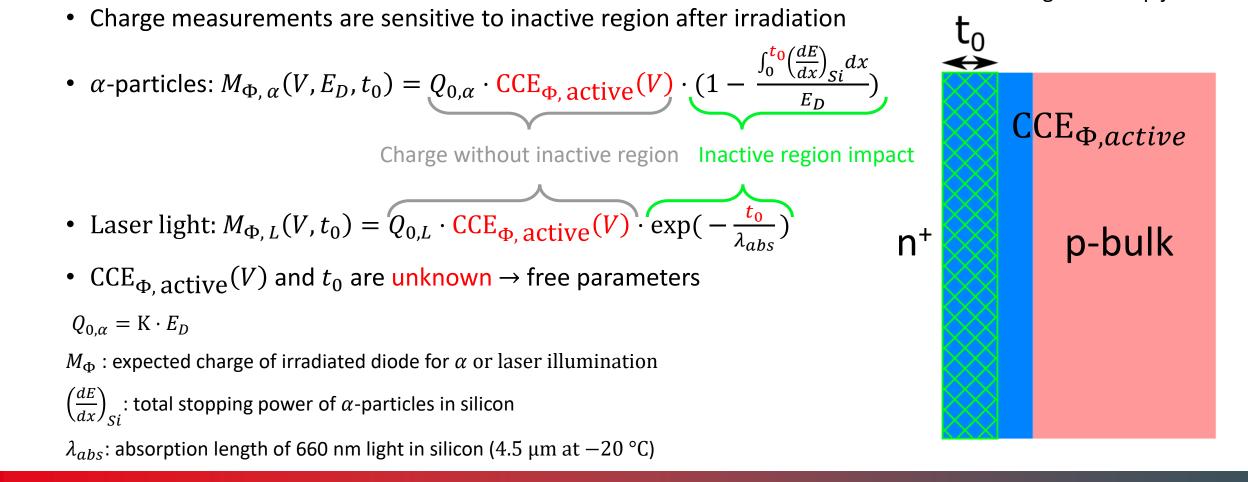
⊖ – Alpha, E_D = 2.62 MeV **– e** Alpha, E_D = 2.97 MeV**o**... Alpha, E_n = 2.04 MeV **--⊖--** Alpha, E_n = 1.55 MeV 0.8 0.8 --- Alpha, E_D = 2.01 MeV Laser Laser 0.6 0.6 CCE_Φ CCE_Φ 0.4 0.4 0.2 0.2 0 400 300 500 600 700 800 300 400 500 600 700 800 V_{bias} [V] V_{bias} [V] Front: n⁺-p junction Rear: p⁺-p junction

CCE Summary

Front side illumination at -20 °C Rear side illumination at -20 °C 1.8 1.8 **Front side** --- $\Phi_{eq} = 1.2 \times 10^{16} \ cm^{-2}, E_D = 2.97 \ MeV$ $--\phi - \Phi_{eq} = 1.2 \times 10^{16} \ cm^{-2}, E_D = 2.62 \ MeV$ $\begin{array}{c} & & & & \\ \hline \bullet & \bullet & e_q = 8.6 \times 10^{15} \ cm^{-2}, \ E_D = 2.62 \ \mathrm{MeV} \\ \hline \bullet & \bullet & - \Phi_{eq} = 2.0 \times 10^{15} \ cm^{-2}, \ E_D = 2.62 \ \mathrm{MeV} \end{array}$ $\Phi_{eq} = 8.6 \times 10^{15} \ cm^{-2}, \ E_D = 2.97 \ MeV$ 1.7 1.7 $-\Phi_{eq} = 2.0 \times 10^{15} \ cm^{-2}, \ E_D = 2.97 \ MeV$ • $CCE_{\Phi,\alpha}$ is function of E_D 1.6 1.6 ^{1.5} 1.5 1.7 Δ^{Φ'Φ} 1.7 Ч. ЭОО / ° for the first two diodes $\underline{\text{CCE}}_{\Phi,\alpha}$ $\mathsf{CCE}_{\Phi,\alpha}$ • The ratio 1.3 1.2 1.2 increases with Φ_{ea} 1.1 1.1 500 700 800 300 400 600 300 400 500 600 800 700 **Rear side** V_{bias} [V] V_{bias} [V] • $CCE_{\Phi,\alpha}$ independent of E_D Front side results hint to the $CC\underline{E_{\Phi,\alpha}} \approx 1$ presence of a field-free region


 $\overline{CCE}_{\Phi,I}$

Device TCAD model


- Existence of field-free region at n⁺-p junction
- Remains field free independent of the bias voltage
- Holes diffuse through field free region
- Non-irradiated: $\tau_d \ll \tau_{e,h}$
- Irradiated: $\tau_d \approx \tau_{e,h}$

 τ_d : diffusion time through inactive region $\tau_{e,h}$: trapping time of electrons and holes Simulated electric field profile in a non-irradiated diode at -20 °C

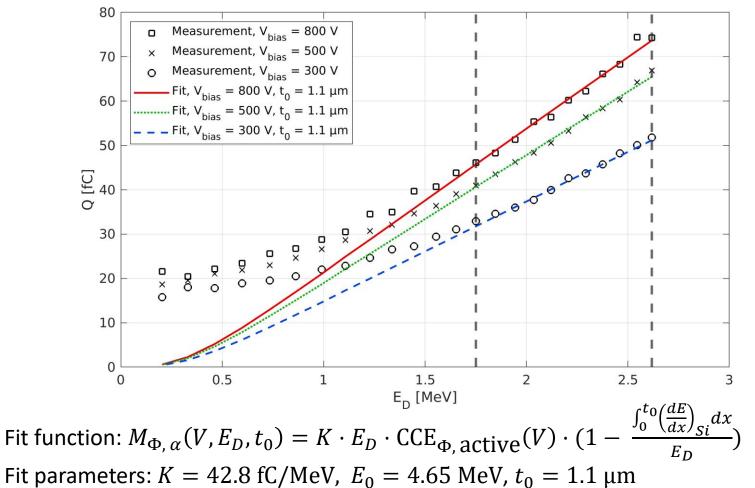
Model for Inactive Region

Cross-section of irradiated diode with modeled inactive region at n^+ -p junction

UH

Universität Hamburg

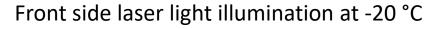
DER FORSCHUNG | DER LEHRE | DER BILDUNG



Model – α -particles $\Phi_{eq} = 2.0 \times 10^{15} \text{cm}^{-2}$

- Good description of charge at high values of E_D
- Threshold effect influences charge below $E_D = 1.7 \text{ MeV}$
- Fit range decreased to first 11 data points

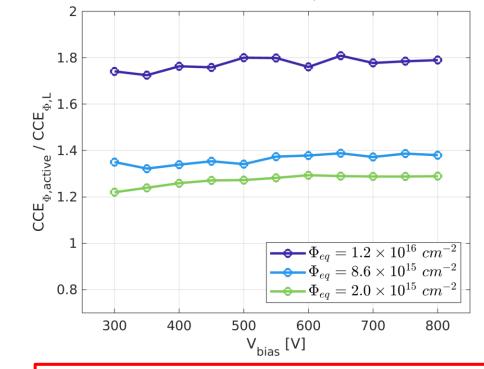
$\Phi_{eq} \left[cm^{-2} \right]$	t ₀ [μm]
$2.0\cdot 10^{15}$	1.1
$8.6\cdot10^{15}$	1.4
$1.2\cdot 10^{16}$	2.6


Front side α -particle illumination at -20 °C

Model – Laser Light $\Phi_{eq} = 2.0 \times 10^{15} \text{ cm}^{-2}$

- Comparison of expected charge using three different t₀
- Underestimation of t₀ leads to exaggerated charge
- Good description of charge at thickness $t_0 = 1.1 \ \mu m$

The prior CCE results can be understood through this model

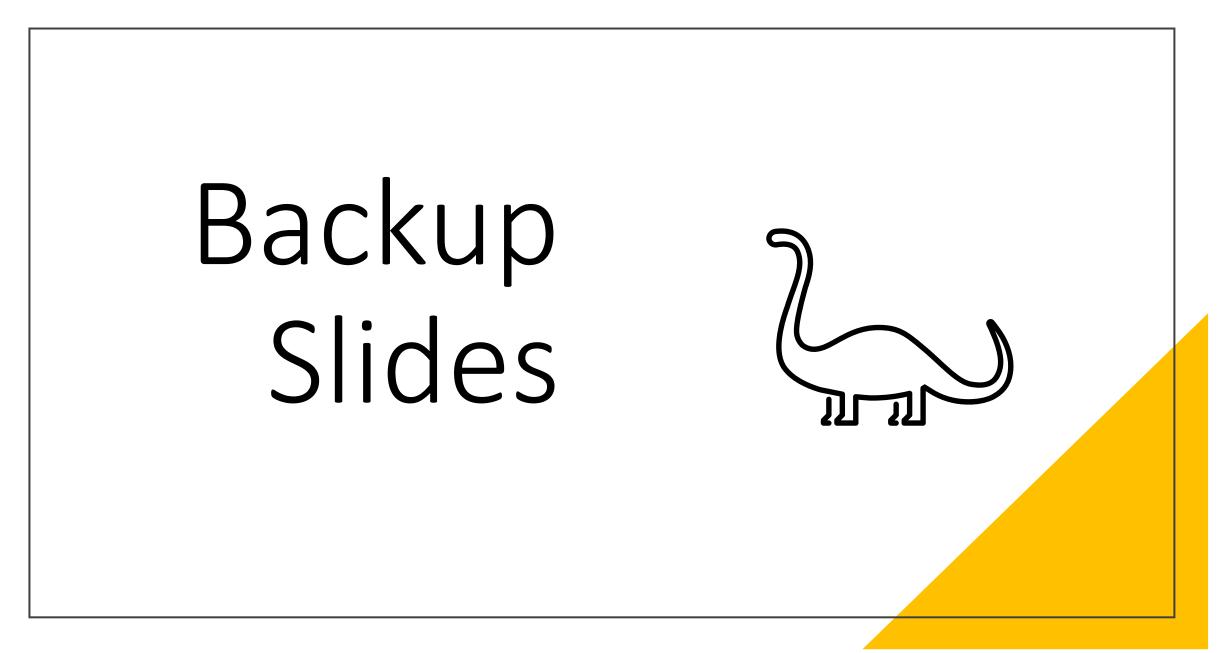

Fit function: $M_{\Phi, L}(V, t_0) = Q_{0,L} \cdot CCE_{\Phi, active}(V) \cdot exp(-\frac{t_0}{\lambda_{abs}})$ Fit parameters: K = 42.8 fC/MeV, $E_0 = 4.65$ MeV

Underestimation of CCE

- Impact of incative region estimated using $\frac{\text{CCE}_{\Phi, active}(V)}{\text{CCE}_{\Phi, L}(V)}$
- Ratio independent of V_{bias} within $\pm 4~\%$
- At highest fluence: CCE with inactive region underestimated by 78 % using laser TCT

Front side laser light illumination at -20 °C, underestimation of $CCE_{\Phi,L}$

Impact of inactive region increases with irradiation fluence Φ_{eq}

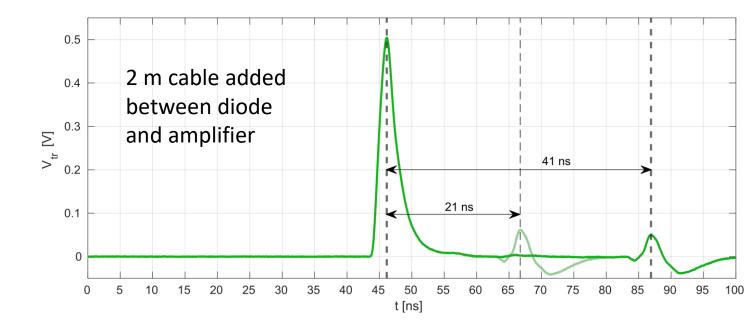

Conclusion

What have we learned?

- Front side CCE influenced by inactive region with minimal charge collection
 - Estimated thickness: 1.1 μm 2.6 μm
- No evidence for an inactive region in the rear side is found

Outlook

- We can not expect the determined $\frac{1}{\tau_{e,h}}$ of both sources to agree without correcting for this inactive region
- A correction for an inactive region must be applied to CCE measurements



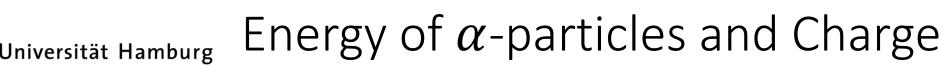
Current Transient

Rear side laser light illumination of a non-irradiated diode at 200 V and -20 °C

- Average of 512 waveforms
- Voltage shift from baseline
- Signal reflection at amplifier
- Non-irradiated diodes
 - Reverse bias: 50 V 300 V
- Irradiated diodes
 - Reverse bias: 300 V 800 V

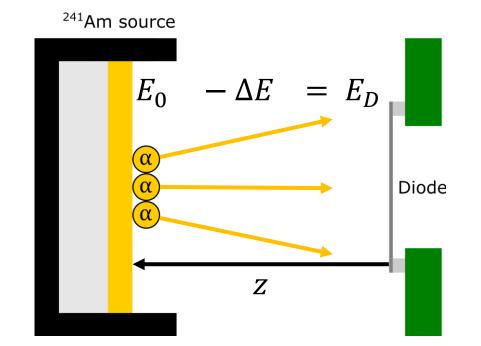
Collected Charge of a diode

 $Q_m = \int_{t_0}^{t_1} \frac{V_{tr}(t)}{50 \ \Omega \cdot 100} dt$, $t_1 - t_0 = 20 \text{ ns}$


Longer cables shift reflection but reduce amplitude slightly

Questions

Whats the proportionality factor between Q_0 and E_D ?


How large is the α -particle energy at the active volume of the diode?

UH

- Expected charge: $Q(z) = \mathbf{K} \cdot E_D(z)$
- $E_D(z) = E_0 \Delta E_{air}(z) \Delta E_{Al} \Delta E_{SiO_2}$
- $\Delta E_j = \rho_j \cdot \int_a^b \left(\frac{dE}{dx}\right)_j dx, \quad j = \{\text{air, Al, SiO}_2\}$
- Theory: $E_0 \approx 5.4 \text{ MeV}$, K = 44.1 fC/MeV
- Take E_0 and K as free parameters and fit Q(z) to $Q_m(z)$

 E_0 : initial energy of alpha particles ΔE : energy loss in respective medium $\frac{dE}{dx}$: total stopping power ρ : density of medium Q_m : measured charge Drifting α -particles on their way to the diode

Fit to Collected Charge

Front side α -particle illumination of non-irradiated diode at 20 °C

- Charge increases proportionally for high E_D
- Charge deviates from linear behaviour below $E_D = 1.5 \text{ MeV}$

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

- Oscilloscope triggers on the transient signal
 - This causes the threshold effect
- Fit range limited to avoid threshold effect

	Front side	Rear side
E_0 [MeV]	4.65 ± 0.01	4.59 ± 0.01
<i>K</i> [fC / MeV]	42.8 ± 1.0	41.5 ± 0.9

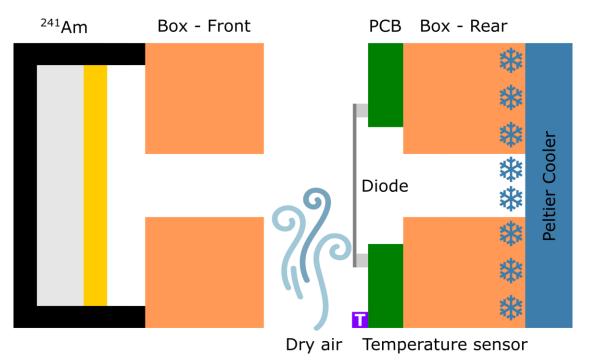
Fit function: $Q(z) = K \cdot (E_0 - \Delta E_{air}(z) - \Delta E_{Al} - \Delta E_{SiO_2})$ Fit parameters: K = 42.8 fC/MeV, $E_0 = 4.65$ MeV

UH

Question

What is the air density after cooling the setup?

- Irradiated diodes are measured at -20 °C
- T drops $\Rightarrow \rho_{air}$ increases $\Rightarrow E_D$ decreases (How much?)


Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

- Energy loss: $\Delta E_{air} = \rho_{air} \int_a^b \left(\frac{dE}{dx}\right)_{air} dx$
- Use free parameter ρ_{air} to fit charge

Results	Front side	Rear side
$ ho_{air}$ [kg m ⁻³]	1.348 ± 0.016	1.336 ± 0.020

UH

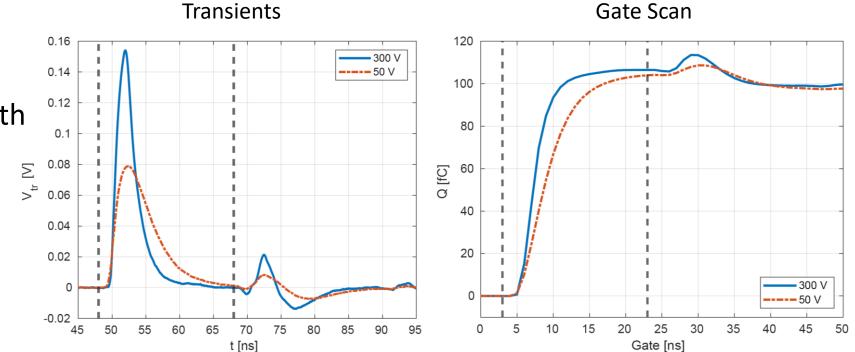
Neutral-density filter

• ND-filter transmit fraction of optical power

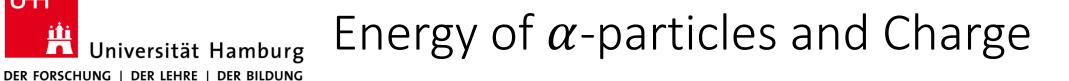
• Optical density / absorbance:
$$0.5 = A = \log_{10} \frac{I_0}{I} \Rightarrow \frac{I}{I_0} \approx 0.316$$

- *I*₀: incoming light intensity
- *I*: transmitted light intensity

Gate Length Calculation


Front side alpha particle illumination of non-irradiated diode at -20 °C

• Goal: obtain maximum collected charge


Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

- Q grows with gate length
- Optimum gate length at $\Delta t = 20$ ns
- Reflection reduces Q beyond that gate

UН

• Expected charge: $Q(z) = \mathbf{K} \cdot E_D(z)$

- $E_D(z) = \frac{E_0}{\Delta E_{air}(z)} \Delta E_{Al} \Delta E_{SiO_2}$
- $\Delta E = \rho \cdot \int_{a}^{b} \left(\frac{dE}{dx}\right) dx$
- Theory: $E_0 \approx 5.4 \text{ MeV}$, K = 44.1 fC/MeV
- Take E_0 and K as free parameters and fit Q(z) to $Q_m(z)$

 E_0 : initial energy of alpha particles ΔE : energy loss in respective medium $\frac{dE}{dx}$: total stopping power ρ : density of a substance

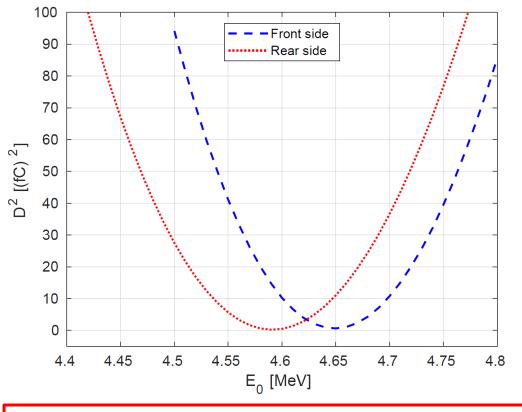
Total stopping power $\left(\frac{dE}{dx}\right)$ of α -particles in silicon 10 $\frac{dE}{dx}$ [MeV cm²/g] 10^{-1} 10° 10 10^{-2} 10^{2} 10^{0} Energy [MeV]

UH

UН

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Universität Hamburg Energy of α -particles and Charge $C_D(z) = E_0 - \Delta E(z)$ $Q(z) = K \cdot E_D(z)$


Minimise deviation to measurement

$$D^{2} = \sum_{i=1}^{n_{Z}} \frac{(Q(z_{i}) - Q_{m}(z_{i}))^{2}}{n_{Z}}$$

	Rear side	Front side
E_0 [MeV]	4.59 ± 0.01	4.65 ± 0.01
<i>K</i> [fC / MeV]	41.5 ± 0.9	42.8 ± 1.0
D _{min} [fC]	0.474	0.796

• $\frac{D_{min}}{\langle Q \rangle} < 1 \% \Rightarrow$ Good fit to the charge

D^2 as a function of E_0 minimised over K

Minimum of D^2 gives best pair of values!

 n_z : number of z-positions taken for the fit

UН

DER FORSCHUNG | DER LEHRE | DER BILDUNG

 E_0 [MeV]

K [fC / MeV]

 D_{min} [fC]

Minimise deviation to measurement

 $D^{2} = \sum_{i=1}^{n_{z}} \frac{(Q(z_{i}) - Q_{m}(z_{i}))^{2}}{n_{z}}$

Rear side

4.59 <u>+</u> 0.01

 41.5 ± 0.9

0.474

• $\frac{D_{min}}{\langle Q \rangle} < 1 \% \Rightarrow$ Good fit to the charge

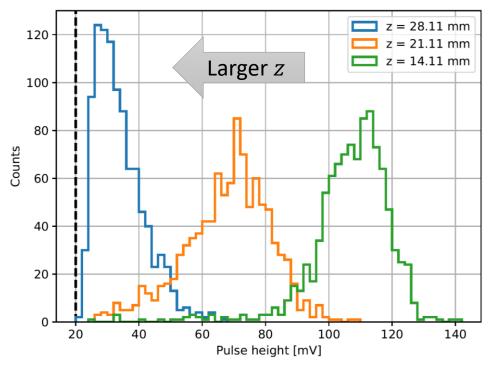
Front side

 4.65 ± 0.01

 42.8 ± 1.0

0.796

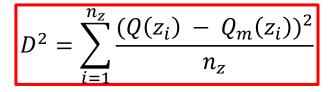
 D^2 as a function of K minimised over E_0


Energy of α -particles and Charge $Q(z) = \frac{E_0 - \Delta E(z)}{Q(z) = K \cdot E_D(z)}$ Universität Hamburg

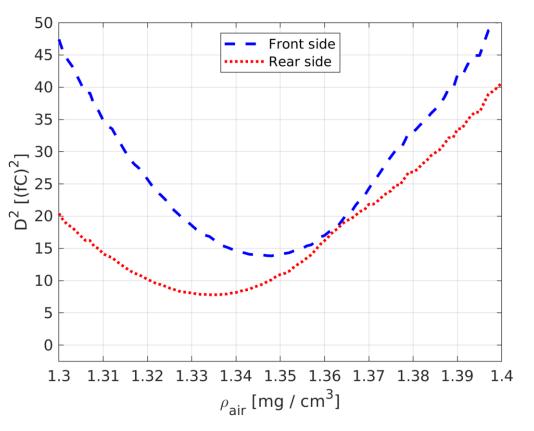
Threshold Effect

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

- Oscilloscope: 20 mV internal threshold trigger
- Trade-off between:
 - Obtaining whole energy spectrum
 - Minimising noise
- Smaller transients are not measured
- Bias towards higher average transient amplitudes
 ⇒ Average measured charge increases


Distribution of 1000 transients, α -particle illumination of non-irradiated diode at 120 V and 20 °C

The larger z the more low amplitude transients are cut off by the trigger


Air Density after Cooling

- Irradiated diodes are cooled prior to TCT
- T drops $\Rightarrow \rho_{air}$ increases $\Rightarrow E_D$ decreases (How much?)
- Energy loss: $\Delta E_{air} = \rho_{air} \int_a^b \left(\frac{dE}{dx}\right) dx$
- Use free parameter ho_{air} to fit charge

	Rear side	Front side
$ ho_{air}$ [mg cm ⁻³]	1.336 ± 0.020	1.348 ± 0.016
D _{min} [fC]	2.793	3.720
Air pressure [hPa]	1003	1009
<i>T</i> [°C]	-11.7 ± 4.0	-12.4 ± 5.0

D^2 as a function of ρ_{air} after cooling down to -20 °C

DER FORSCHUNG | DER LEHRE | DER BILDUNG

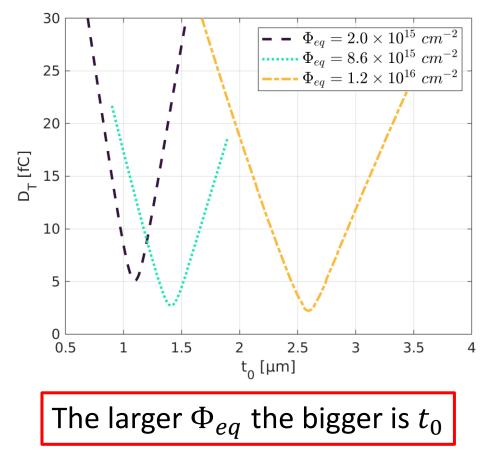
Universität Hamburg

UH

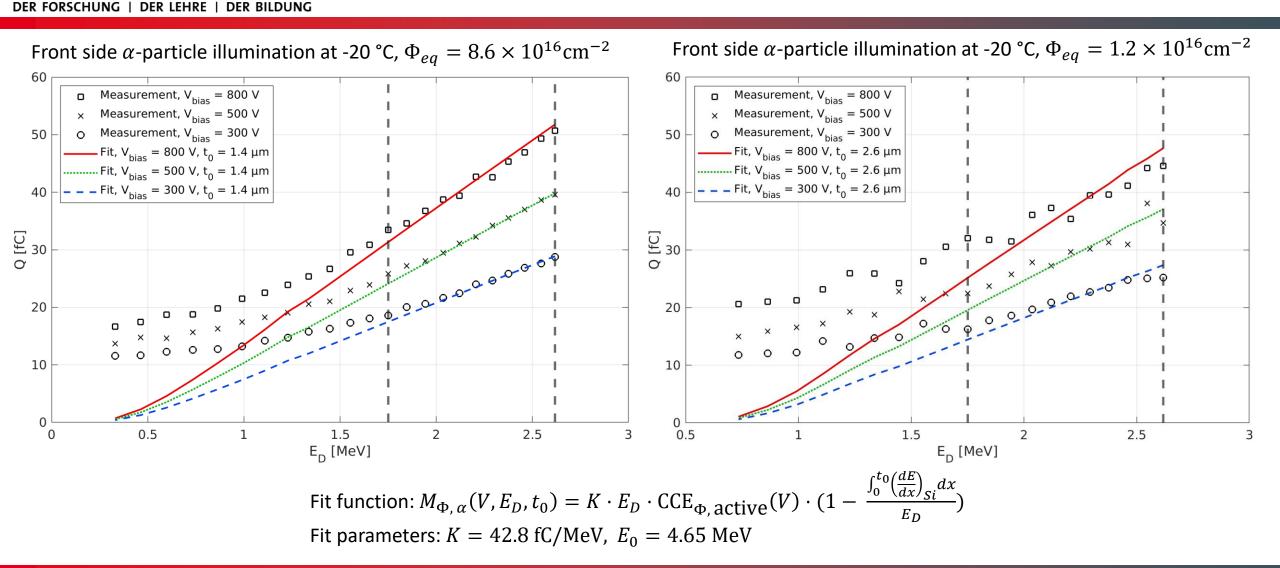
• Deviation from measured charge for α -particles:

$$D_{\alpha}^{2} = \frac{1}{n_{V} \cdot n_{E}} \sum_{i=1}^{n_{V}} \sum_{j=1}^{n_{E}} \left(M_{\Phi,\alpha} (V_{i}, E_{j}) - Q_{\Phi,\alpha} (V_{i}, E_{j}) \right)^{2}$$

• Deviation from measured charge for laser light:


 $D_L^2 = \frac{1}{n_V} \sum_{i=1}^{n_V} \left(M_{\Phi,L}(V_i) - Q_{\Phi,L}(V_i) \right)^2$

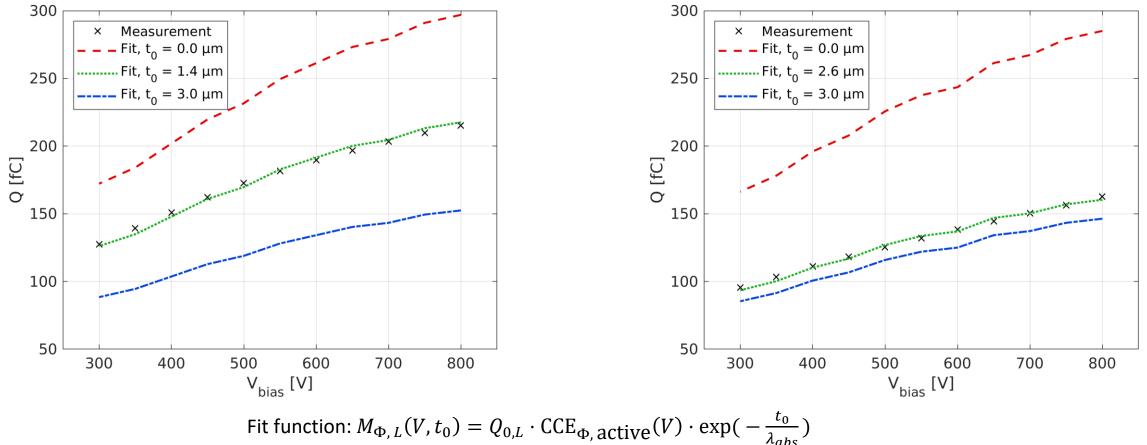
 \Rightarrow Total deviation: $D_T = \sqrt{D_{\alpha}^2 + D_L^2}$


$\Phi_{eq} [cm^{-2}]$	t ₀ [μm]	$D_{T,min}$ [fC]
$2.0\cdot10^{15}$	1.1	5.1
$8.6\cdot10^{15}$	1.4	2.7
$1.2\cdot10^{16}$	2.6	2.2

 $n_{V,E}$: number of voltages or lpha-particle energies taken for the fit

D_T as a function of t_0 for several irradiated diodes at -20 °C

Model – α -particles

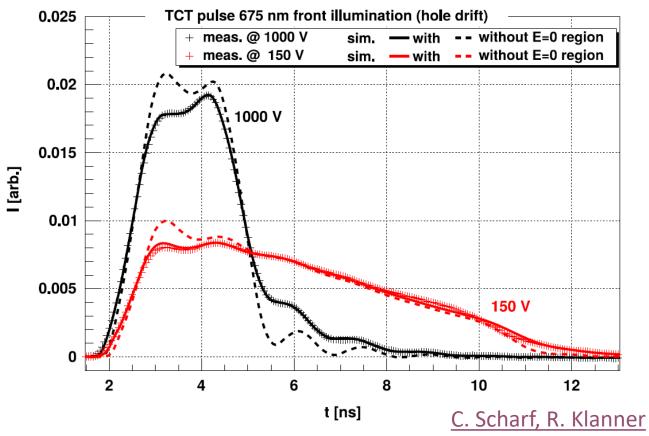

UH

Universität Hamburg

Model – Laser Light

Front side laser light illumination at -20 °C, $\Phi_{eq} = 8.6 \times 10^{16} \mathrm{cm}^{-2}$

Fit parameters: K = 42.8 fC/MeV, $E_0 = 4.65$ MeV


Front side laser light illumination at -20 °C, $\Phi_{eq} = 1.2 \times 10^{16} {\rm cm}^{-2}$

Simulation

Current transients of p-type HPK diode, 675 nm laser light front illumination at 293 K. Solid lines: Simulation with field-free regions of $1.6 \ \mu m$ at n⁺-p side

- Fit of simulated transients to measured transients
- Adding field-free region of 1.6 μm at n⁺-p side results in good description
- Not understood why field-free regions : are not required for p⁺-n diodes

