### Time resolution of 4H-SiC PIN and simulation of 4H-SiC LGAD











**Tao Yang**<sup>1,2</sup>, Yuhang Tan<sup>1,2</sup>, Qing Liu<sup>3</sup>, Suyu Xiao<sup>1,2</sup>, Kai Liu<sup>2</sup>, Jianyong Zhang<sup>2</sup>, Ryuta Kiuchi<sup>2</sup>, Mei Zhao<sup>2</sup>, Boyue Wu<sup>4</sup>, Jianing Lin<sup>5</sup>, Weimin Song<sup>5</sup>, Hai Lu<sup>3</sup>, Xin Shi<sup>2</sup>

<sup>1</sup>University of Chinese Academy of Sciences <sup>2</sup>Institute of High Energy Physics, CAS <sup>3</sup>Nanjing University <sup>4</sup>Guangxi University <sup>5</sup>Jilin University

### The 38th CERN RD50 workshop

2021-6-21

# Outline

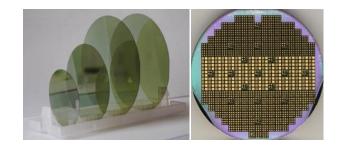
### Image: Motivation

Measurement of time resolution for 4H-SiC PIN

- NJU 100  $\mu m$  4H-SiC PIN
- Beta source system setup
  Waveform sampling
  Energy loss simulation

  - **Time resolution**

□ Simulation of 4H-SiC LGAD


- ✓ The Challenge of fast 4H-SiC sensor
  ✓ TCAD simulation of 4H-SiC LGAD
  ✓ NJU 4H-SiC LGAD prototype design

### **Summary**



# Motivation

Benefiting from the industrial investment of SiC
 Power electronic devices, the technology of SiC
 substrate and fabricating process develop fast.



□ Silicon carbide device has huge potential to apply on future collider and nuclear fusion:

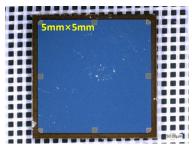
| Characteristic                      | Si                | 4H-SiC            |
|-------------------------------------|-------------------|-------------------|
| Eg (eV)                             | 1.12              | 3.26              |
| Thermal conductivity                | 1.5               | 4.9               |
| E <sub>breakdown</sub> (V/cm)       | 0.5               | 3                 |
| Saturated electron velocity (cm/s)  | 1×10 <sup>7</sup> | 2×10 <sup>7</sup> |
| ionization energy for e-h pair (eV) | 3.64              | 7.8               |
| displacement energy                 | 13                | 21.8              |



- ✓ High energy resolution
- Much previous studies focus on charge collection efficiency and energy resolution of silicon carbide device, but lack the study of time performance for the MIPs.

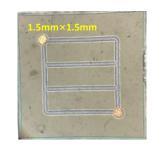
The 4H-SiC LGAD is introduced to enhance the signal amplitude and simultaneously acquire a high time resolution.



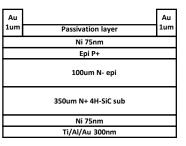

### > NJU 4H-SiC PIN Sensor

 $\checkmark$  100 µm active layer

✓ Two different size: 5mm×5mm, 1.5mm×1.5mm


- ✓ High uniformity
- ✓ Low leakage current

### Device structure

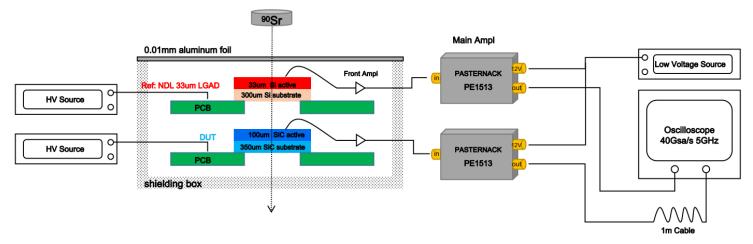



### 5mm×5mm

### Au 1um Passivation layer 1um Ni 75nm Imp P+ 100um N- epi 350um N+ 4H-SiC sub Ni 75nm Ti/Al/Au 1.5um



### 1.5mm×1.5mm




### Device performance

1.5mm×1.5mm 5mm×5mm IV CV IV CV 10-350 10--#1 10 10-#2 #2 300 #3 (Jd) 250 Capacitance (pF) 10-10-Current (A) 10-2 10-3 10-3 10-10 Current (A) 10-0 10-10 10-10 10-10 Capacitance ( #9 #10 10-11 10-11 3 50 10-12 10-12 10-13 10-13 0 -40 -30 -20 -10 -200 -150 -100 -50 0 -40 -30 -20 -10 0 -200 -150 -100 -50 0 0 Voltage (V) Voltage (V) Voltage (V) 看京大崇 Voltage (V) 為古水 遊



### > Beta source system setup to measure time resolution



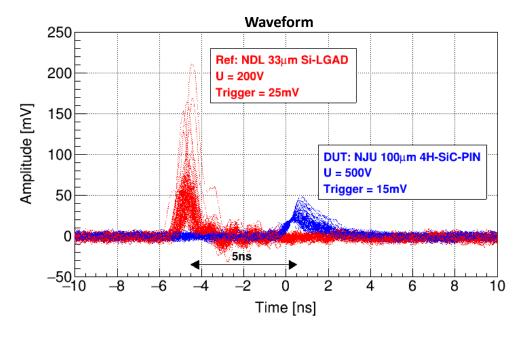
Ref: NDL 33  $\mu$ m Si-LGAD  $\sigma_T = 34 \ ps$  U=200V at room temperature

DUT: NJU 100  $\mu m$  4H-SiC-PIN 5mm  $\times 5mm$  , 1.5mm  $\times 1.5mm$ 

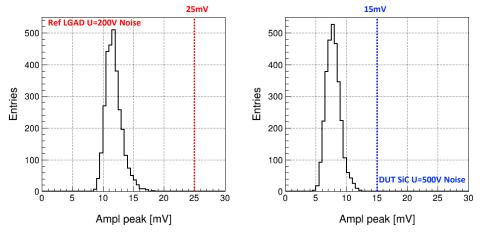
### System configuration:

□ 2 channels trigger mode: Trigger<sub>LGAD</sub>=25mV, Trigger<sub>SiC</sub>=15mV which depend on noise level.

**D**UT time delay: ~ 5 ns from 1 meter cable to enhance trigger efficiency.


□ Sampling: 20 Gsa/s each channel where  $\sigma_{\text{TDC}} = \frac{50\text{ps}}{\sqrt{12}} \sim 14\text{ps}$ 

□ Timer: Constant Fraction Descriminator (CFD ratio = 50%)


Amplifier: 100 times from (UCSC board + Broad Band Amplifier)

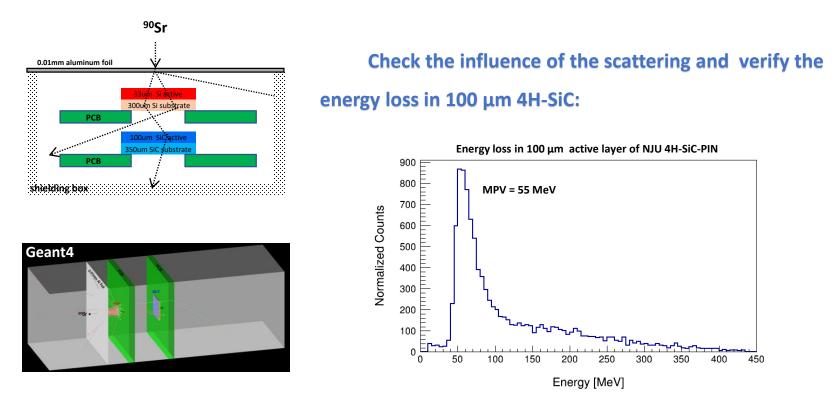


# > Waveform sampling








- Select the trigger level to suppress noise.
- **D** Tow obvious pulses from Ref and DUT device by  $\beta$  particle.
- □ ~ 5ns time delay of 4H-SiC PIN

signal.

The most of signals for 4H-SiC PIN are lost due to high trigger level.

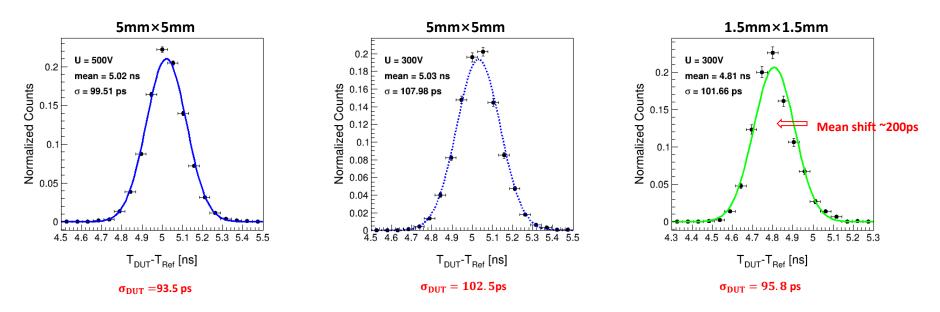


# > Scattering and energy loss simulation by GEANT4



□ The MPV of energy loss in 4H-SiC PIN active region is 55 MeV (typical experimental result ~42 MeV).

□ The scatter by aluminum foil and Ref-LGAD would strongly decrease the hit efficiency. Measured  $\eta$ (5mm×5mm)~5 events/min,  $\eta$ (1.5mm×1.5mm)~2 events/min where large size has higher trigger efficiency.




7

# Time Resolution

### For large size 100 µm 4H-SiC PIN device, the measured time resolution

### could be smaller than 100 ps.



□ Higher reverse voltage (faster carrier velocity) has better time resolution.

□ Smaller size device (smaller capacitance) has better time resolution.

■ The T<sub>DUT</sub>-T<sub>Ref</sub> mean of the 1.5mm×1.5mm device shifts around 200 ps caused by smaller rising time.



# > The Challenge of fast 4H-SiC sensor

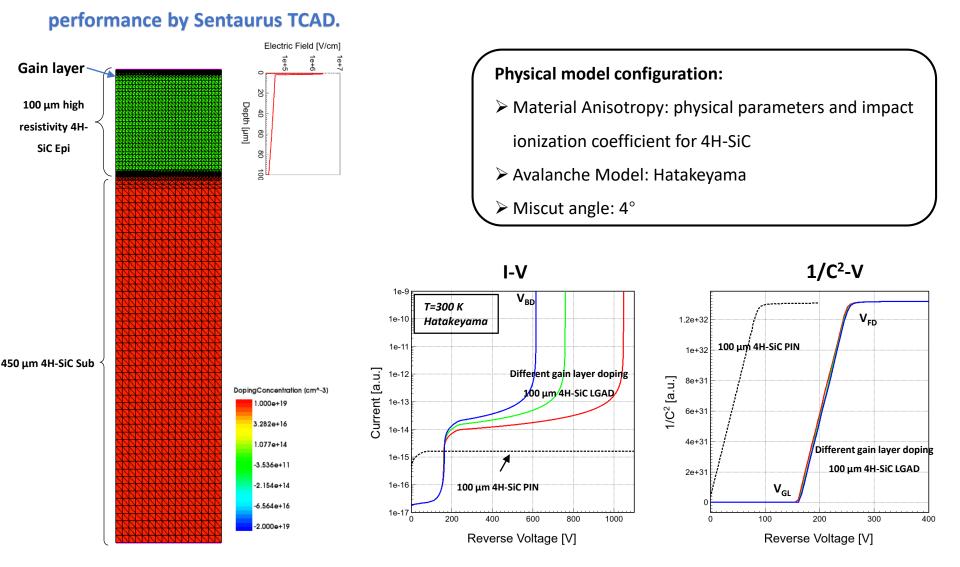
□ Thicker active layer is required which is adverse to better time performance.

 $\square$  To achieve the carrier velocity saturated (corresponding electric field 40-50 V/µm) and

low operate voltage, the 4H-SiC sensor needs to be thin as far as possible.



□ How to achieve appropriate gain due to low carrier multiplication coefficient of 4H-SiC?


How to achieve the typical doping concentration distribution in 4H-SiC LGAD due to low doping activation rate in 4H-SiC and restricted process technology?



9

# TCAD simulation of 4H-SiC LGAD

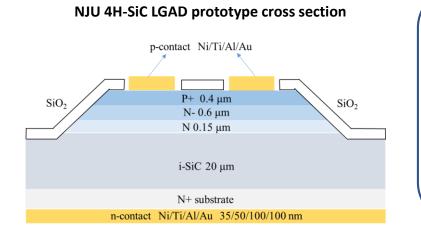
### Based on NJU 100 $\mu$ m 4H-SiC device process, we simulate the corresponding LGAD





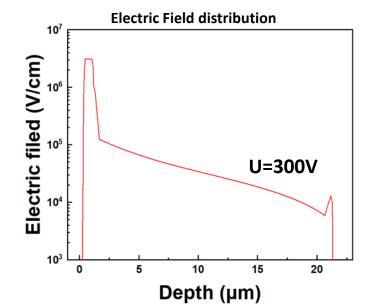
Institute of High Energy Physics, CAS

# TCAD simulation of 4H-SiC LGAD


MIPs signal response of the 4H-SiC LGAD could be simulated by Sentaurus TCAD and RASER. The initial current signal is from TCAD and the waveform after electrics is from RASER\*.

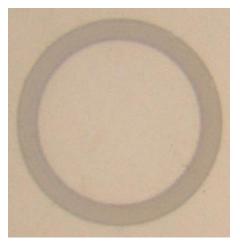


\* RASER (RAdiation SEmiconductoR): a fast simulation tool for 4H-SiC sensor. <u>https://github.com/dt-np/raser/</u>




# > NJU 4H-SiC LGAD prototype design




### **Key technologies of 4H-SiC LGAD fabricating:**

- Epitaxial structure design.
- High quality low doping 4H-SiC layer growing technology.
- Bevel Edge Termination.
- High quality passivation.
- > N or P type ohmic contacts



# 4 inch 4H-SiC Epi Wafer

### Surface of Bevel Edge Termination





# > Summary

**D** The time resolution for a 5mm imes 5mm 4H-SiC-PIN detector could reach 94  $\pm$  1 ps by <sup>90</sup>Sr source.

- With higher reverse voltage and smaller capacitance, a better time resolution is obtained.
- □ The prototype 4H-SiC LGAD with gain ~36 is verified by Sentaurus TCAD simulation.
- □ The multi-layer epitaxy growing process for 4H-SiC LGAD is verifying by NJU.

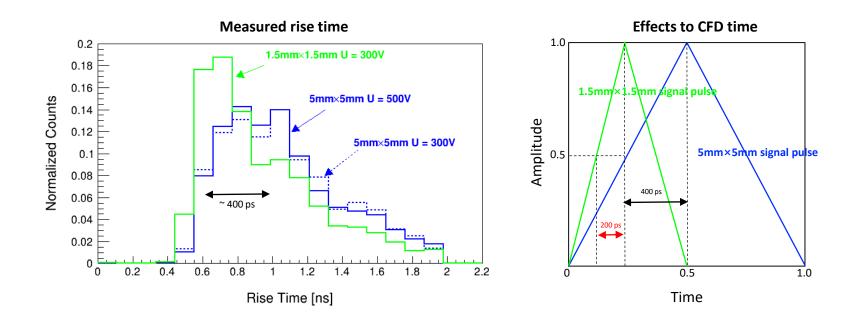
The radiation campaign and study of irradiated 4H-SiC PIN performance is on going.



Shanks for your attention

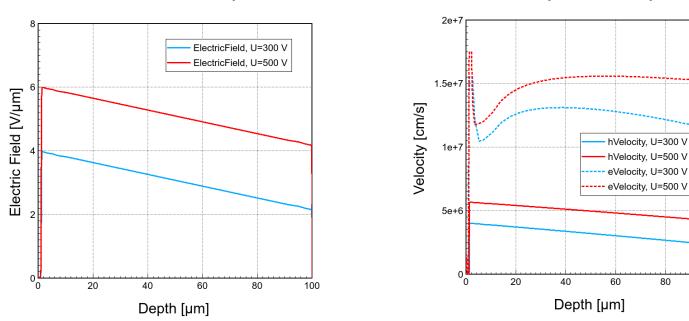


Institute of High Energy Physics, CAS


# Backup



Institute of High Energy Physics, CAS


# > Time shift caused by rising time for different size sensors

The  $T_{DUT}$ - $T_{Ref}$  mean of the 1.5mm×1.5mm device shifts around 200ps due to faster rise time than the 5mm×5mm size device.





### **Electric Field dependence for carrier velocity in 4H-SiC**



**Electric Field distribution by TCAD** 

Velocity distribution by TCAD



100