

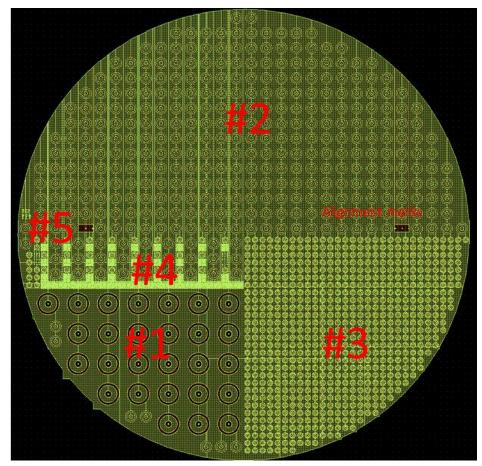
Radiation damage investigation of epitaxial p-type silicon using Schottky and pn-junction diodes

E. GIULIO VILLANI, <u>CHRISTOPH KLEIN</u>, THOMAS KOFFAS, ROBERT VANDUSEN, GARRY TARR, PHILIP PATRICK ALLPORT, YIBO CHEN, LAURA GONELLA, IOANNIS KOPSALIS, IGOR MANDIC, FERGUS WILSON, HONGBO ZHU, YIBO CHEN, PEILIAN LIU

 38^{TH} RD50 Workshop, 21-23 June 2021

Schottky Project description and goals

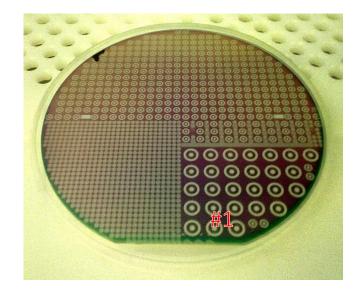
- <u>What:</u>
 - fabricate Schottky and n⁺p diodes on p-type epitaxial (50μm thick) silicon wafers
 - doping concentrations as they are normally found in CMOS MAPS devices
- <u>Why:</u>
 - investigate and gain a deeper understanding of radiation bulk damage in CMOS sensors.
 - develop reliable damage models that can be implemented in TCAD device simulators (Synopsys or Silvaco)

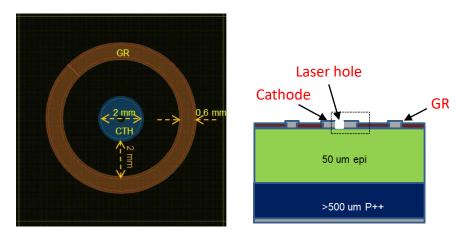

• <u>How:</u>

- purchase of 6-inch wafers at five B-doped epitaxial levels (10¹³, 10¹⁴, 10¹⁵, 10¹⁶ and 10¹⁷ cm⁻³)
 25x each, total **125 wafers**
- fabrication process has started both at ITAC (RAL) and Carleton University Microfabrication Facility (CUMFF).
- tests will be carried out at RAL, Birmingham, JSI, CUMFF, IHEP

Design and layout of devices

5 type of devices proposed:


- #1: 2 mm Ø cathode with 0.4 mm Ø central hole, 10 x 10 mm² area
- #2: 1 mm Ø cathode, 0.2 mm Ø central hole, 5 x 5 mm²
- #3: 0.5 mm Ø cathode, no central hole, 2.5 x 2.5 mm²
- #4: 0.1 mm Ø cathode, no central hole, 0.5 x 0.5 mm²
- 'cell' with the previous 3 flavors (2,3,4) grouped together, to exploit wafer uniformity on small area
- **#5**: 6 TLM points for contact and epi resistance
- 2 masks only (metal and oxide)
- detailed description during the <u>35th RD50 workshop</u>



Design and layout of devices

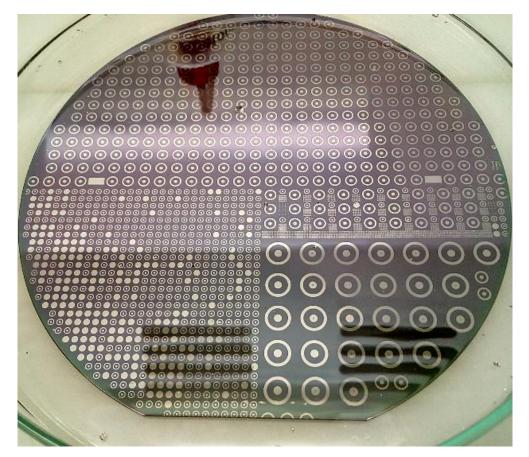
5 type of devices proposed:

- #1: 2 mm Ø cathode with 0.4 mm Ø central hole, 10 x 10 mm² area
- #2: 1 mm Ø cathode, 0.2 mm Ø central hole, 5 x 5 mm²
- #3: 0.5 mm Ø cathode, no central hole, 2.5 x 2.5 mm²
- #4: 0.1 mm Ø cathode, no central hole, 0.5 x 0.5 mm²
- 'cell' with the previous 3 flavors (2,3,4) grouped together, to exploit wafer uniformity on small area
- **#5**: 6 TLM points for contact and epi resistance
- 2 masks only (metal and oxide)
- detailed description during the <u>35th RD50 workshop</u>

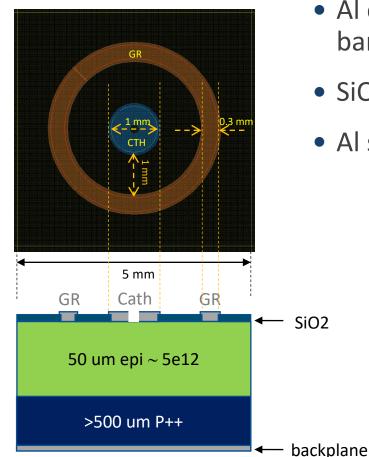
Fabrication details & comparison

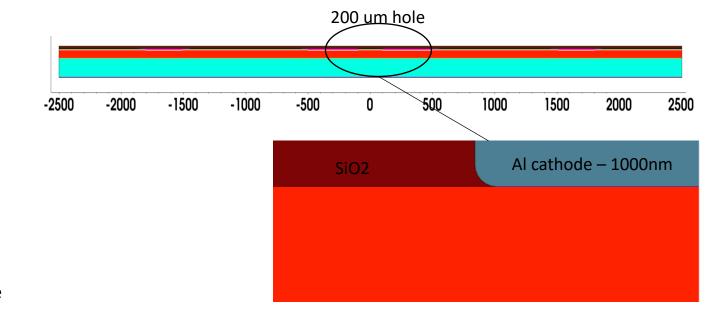
RAL-ITAC

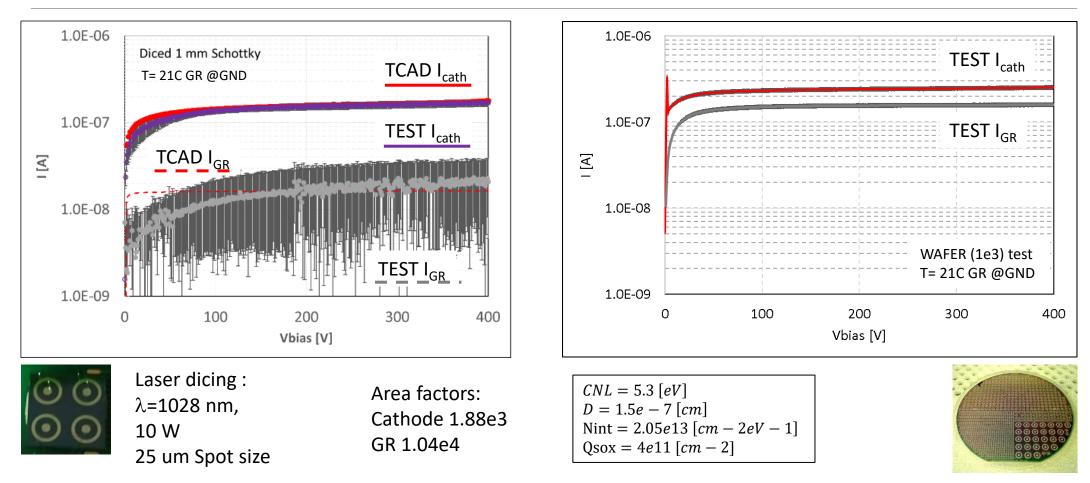
- Schottky fabrication process only, optimised on test wafers
- oxide deposition @150°C
- Al sputtering immediately after etching (no thin SiO2 layer)
- Al lift off in Acetone ultrasonic tank


CUMFF

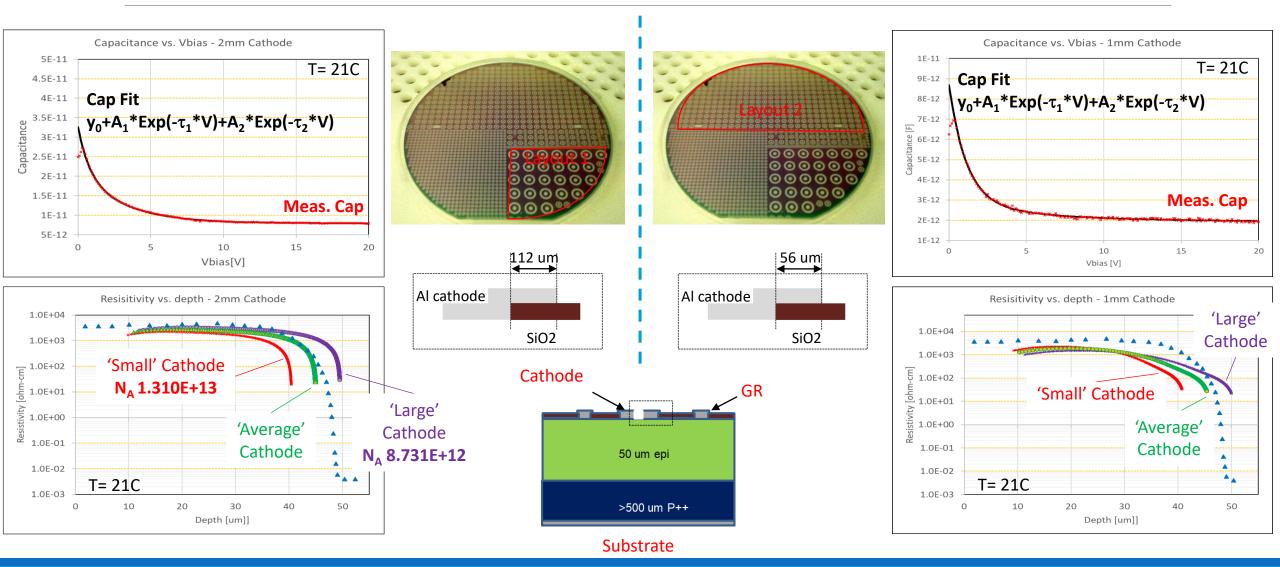
- pn-junction and Schottky processes, optimised on test wafers
- 6" substrate wafers laser cut into 4" or 6" wafer pieces
- high temperature thermal oxidation
- Al front metal thermal deposition, back Al via e-beam evaporation
- front metal patterning + etching


full details of fabrication processes in <u>E.G. Villani's</u> talk from the 36th RD50 Workshop


- 2x full 4-inch wafers with pn-junctions fabricated at CUMFF; multiple Schottky runs with 1e13 wafer pieces
- 9 full Schottky wafers fabricated at RAL (5x 1e13; 1x 1e14, 1e15, 1e16, 1e17 each)
- results cross-checked between institutes
- laser dicing at Scitech (RAL) for small samples used in DLTS and irradiation
- DLTS on Schottky and pn-junctions performed in Bucharest and at Semetrol (USA)

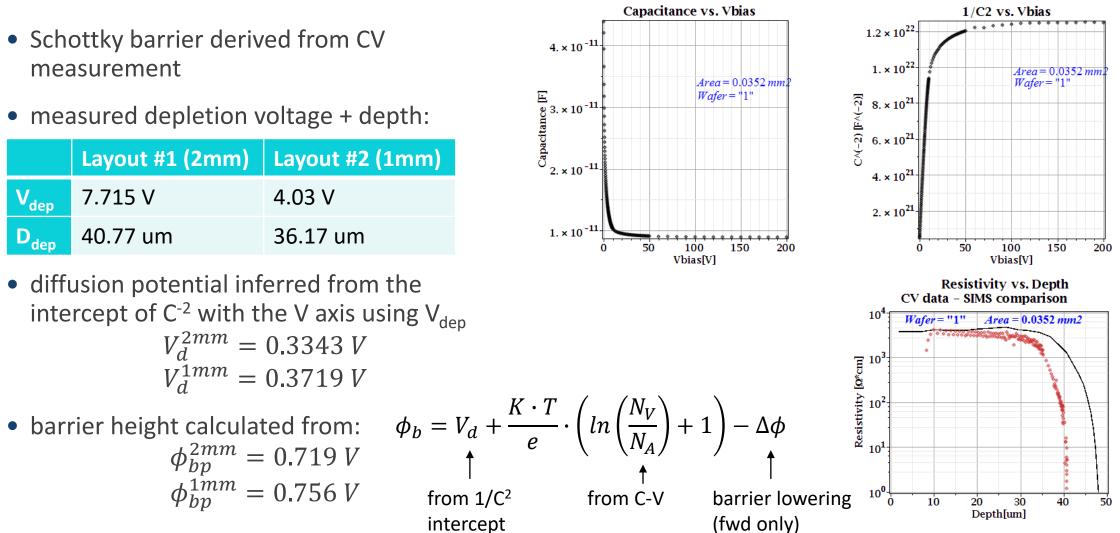

- Al cathode/GR Schottky (Fermi pinning + e-tunneling + barrier lowering)
- SiO₂ interface states
- Al surface states + rounded cathode edges (need measuring)

TCAD simulation of <u>1 mm</u> cathode device – simulated 2D structure of 5 mm (!)



IV simulations vs. test

Laser dicing process introduces high density of charge \rightarrow might be responsible for GR current change *TCAD simulation predicts BV at ~ 420V discrepancy with test results (BV ~ 800V), being investigated

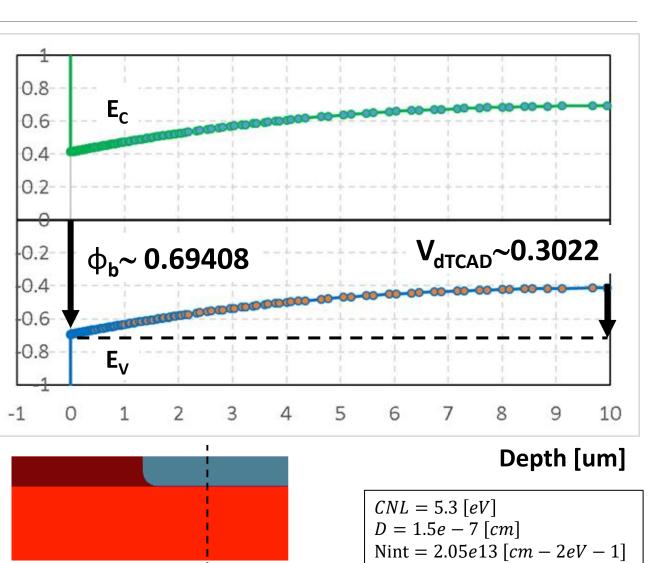

Schottky barrier height

- Schottky barrier derived from CV measurement
- measured depletion voltage + depth:

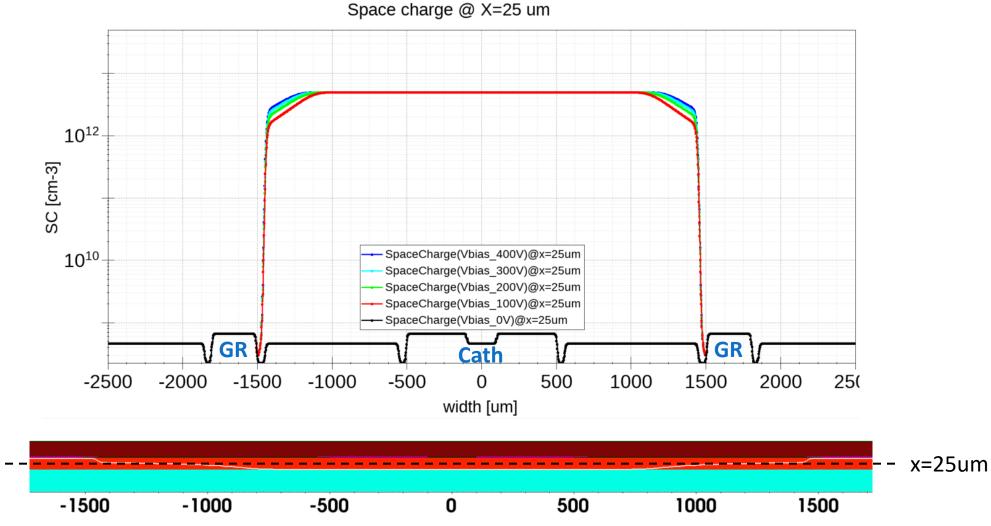
	Layout #1 (2mm)	Layout #2 (1mm)
V _{dep}	7.715 V	4.03 V
D _{dep}	40.77 um	36.17 um

 diffusion potential inferred from the intercept of C^{-2} with the V axis using V_{dep} $V_d^{2mm} = 0.3343 V$ $V_d^{1mm} = 0.3719 V$

 $\phi_{hn}^{1mm} = 0.756 V$

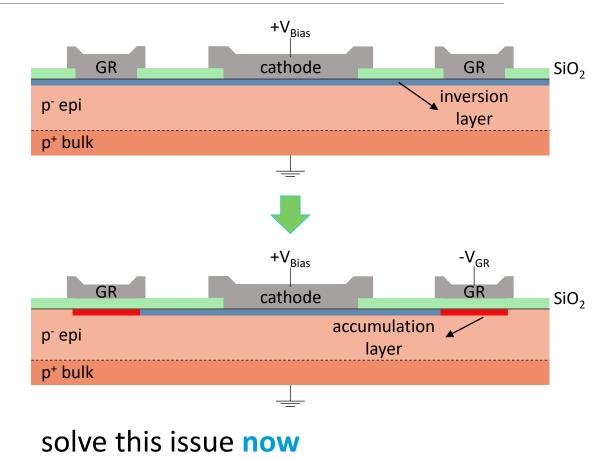

Schottky barrier in TCAD

 experimental data of barrier height vs. metal workfunction for n-type Si

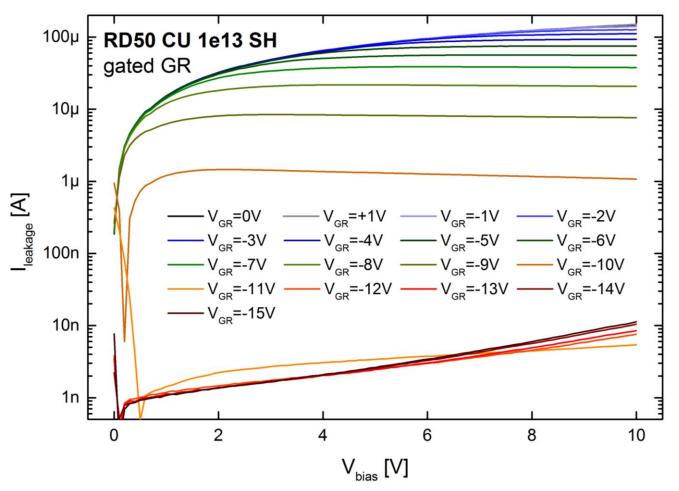

Metal	Si	Ge	GaAs	
Al	0.58	0.48	_	[eV]
Ag	0.54	0.50	0.63	e
Au	0.34	0.30	0.42	ш
Ti	0.61	0.48	_	
Hf	0.54	_	0.68	
Ni	0.51	-	-	
Pt	0.20	-	_	

assuming ~ the same for p-type

• $\phi_{bp} \sim 0.50$ -0.58 eV reported in literature



Reducing leakage current: MOS gate guard ring structure


- some diode runs on 1e13 cm⁻³ wafer had high leakage currents
- tests showed that cause was formation of electron inversion layer
- expected typical behaviour after radiation damage in oxide
 - outlook to actual behaviour after irradiation
- mitigate by modifying the masks to isolate GR on oxide
- apply low negative V to gated GR
 - accumulation layer formation in interface
 - limit inversion layer

⇒ improve performance of irradiated devices later

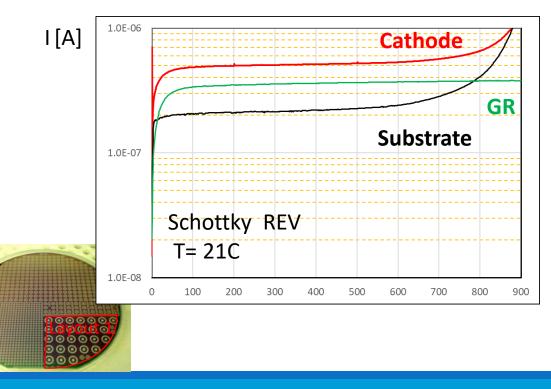
Reducing leakage current: MOS gate guard ring structure

- gated GR yielded expected results
- high leakage fully mitigated for $V_{GR} < -10V$
 - depending on oxide thickness
- devices even showed 'memory effect'
 - stable-ish charge traps in interface
 - further improvements during repeated scans
- try p-stop for comparison and more consistent (?) performance
- looking forward to effects on irradiated devices

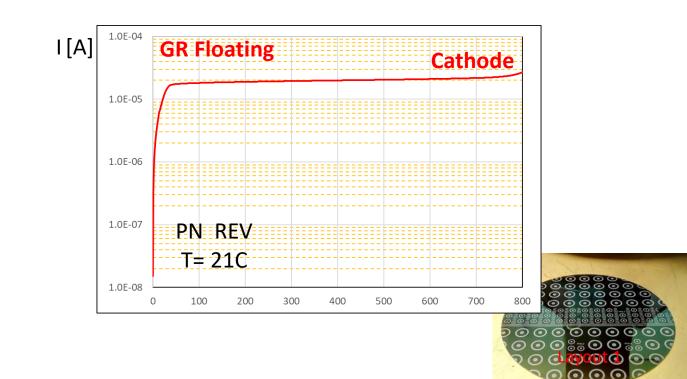
Summary & outlook

- testing has proceeded successfully after shutdown periods last year
- general electrical characterisation from IV/CV measurements, very detailed trap characterisation from DLTS and TAS
- TCAD simulations of Schottky diodes ongoing
 - need to improve breakdown voltage simulation
- fabrication efforts at RAL and CUMFF has ramped up
 - adaptability and flexibility of processing shown

Outlook:


- > new fabrication runs with updated mask (e.g. including new GR flavour)
- > proton irradiations at Birmingham (in 2021), neutron irradiations at Ljubljana
- > charge collection measurements

Backup


SCHOTTKY DIODES

- backplane + GR at GND
- all layouts tested

PN JUNCTIONS

• leakage current much higher than for Schottky by two orders of magnitude

Schottky barrier – Theory

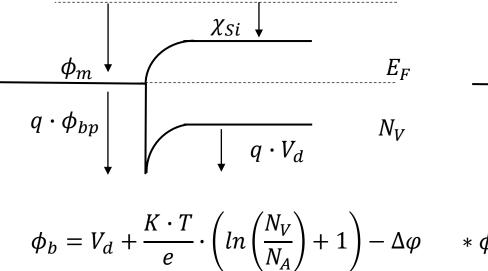
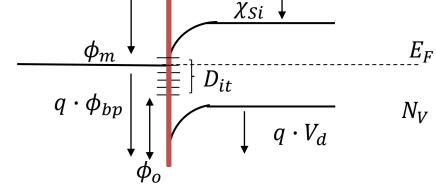
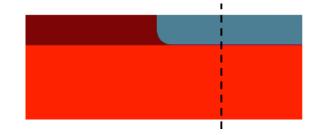



Table 1. Experimental barrier height data for p-type silicon Schottky diodes

		-			unoues			
Metal	Si			ϕ_{ms}^{p}	(eV) From			
Al	0.58	Metal	ϕ_m (eV)	$\frac{1}{c^2} - V$	<i>I–V</i>	ϕ^p_{ms} (eV avg.	ϕ_{ms}^{n} (eV) of (Ref. 3)	
Ag	0.54	Ag	4.31	0.53	0.55	0.54	0.56	1.10
Au	0.34	AL	4.20	0.57	0.58	0.58	0.50	1.08
Ti Hf	0.61 0.54	Au	4.70	0.34 (210°K)	0.34 (210°K) 0.35 (250°K)	0.34	0.81	1.15
Ni	0.51	Cu	4.52	0.46 (280°K)	0.46	0.46	0.69	1.15
Pt	0.20	Ni	4.74	0.50	0.51	0.51	0.67	1.18
	[4]	Pb	4.20	0.54	0.56	0.55	0.41	0.96

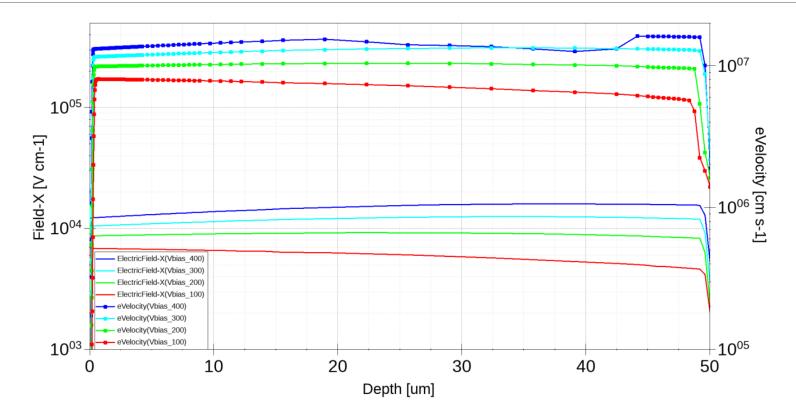


$$*\phi_b = \gamma \cdot (E_g + \chi_{si} - \phi_m) + (1 - \gamma) \cdot \phi_c$$

$$\gamma = \frac{\varepsilon}{\varepsilon + q^2 \cdot \delta \cdot D_{it}}$$

 ε = permittivity of interface layer ~ ε_o δ = thickness of interface layer hp: 1-2 [nm][2] D_{it} = interface states density \rightarrow [1.3-2.6]e13 [cm⁻² eV⁻¹]

estimate of $\phi_o \sim 0.38$ eV for neutrality level above BV edge

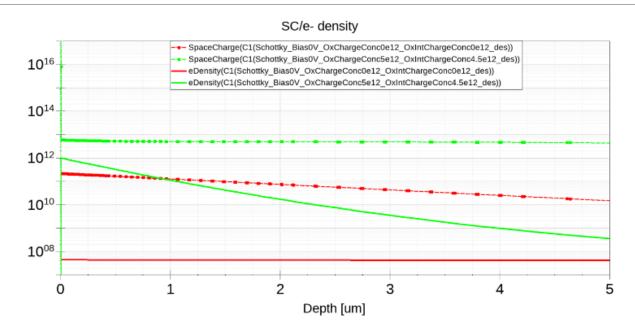


The presence of metal-Si interface states affects the barrier height ϕ_b and diffusion potential V_d

* Cowley-Sze model with thin oxide insulating layer between Si-Metal

[1] *R.W. Bene'et al.*; *J.Vac.Sci.Technol.* 14.925 (1977)
[2] ITAC measurements & http://dx.doi.org/10.1063/1.347181




Electric Field(X) / e velocity vs. depth @ Y=0

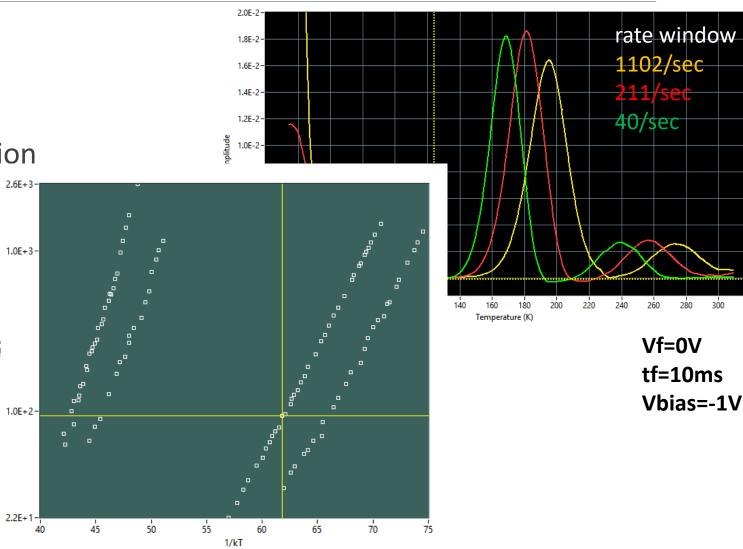
TCAD: SiO₂ traps

Interface Defect	Level	Concentration	σ	
Acceptor	E _C -0.4 eV	40% of acceptor N_{IT} (N_{IT} =0.85 $\cdot N_{OX}$)	0.07 eV	T F
Acceptor	E _C -0.6 eV	60% of acceptor N_{IT} (N_{IT} =0.85 $\cdot N_{OX}$)	0.07 eV	
Donor	E _V +0.7 eV	$\begin{array}{c} 100\% \text{ of donor } N_{\text{IT}} \\ (N_{\text{IT}} = 0.85 \cdot N_{\text{OX}}) \end{array}$	0.07 eV	

* Effects of Interface Donor Trap States on Isolation Properties of Detectors Operating at High-Luminosity LHC, DOI: 10.1109/TNS.2017.2709815

Fixed oxide-charge (**Oxch**) density and interface traps (**Oxint**) included Interface traps distributed among 3 energy levels, Gaussian, σ = 70meV Ratio Oxint/Oxch ~ 0.9

The presence of SiO2- Si interface states affects leakage current between Cath and GR


T2/e

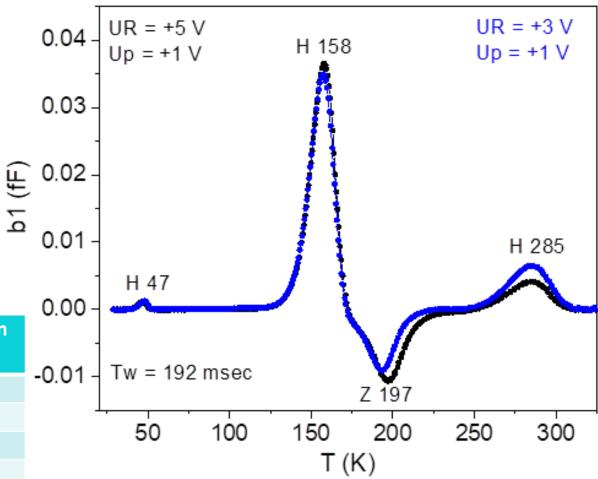
DLTS spectrum:

- 2 maxima
- analysis with Gaussian deconvolution \Rightarrow peaks contain 2 traps each 2.6E+3

trap params from Arrhenius plot:

Midpoint temp (K)	E _t (eV)	Sigma (cm ²)	N _t /N _s
170.6	0.293	7.6E-16	9.7E-3
182.8	0.310	7.0E-16	2.1E-2
241.8	0.430	1.0E-15	7.6E-4
258.5	0.536	3.2E-14	3.5E-3

300

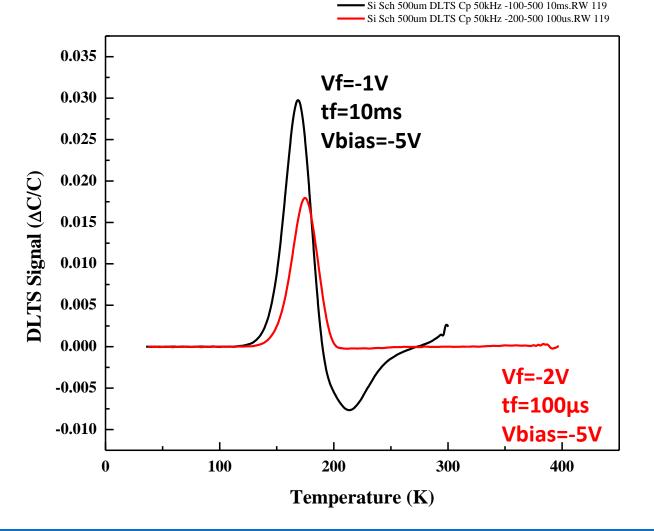

DLTS measurements: Schottky diode @Bucharest

DLTS spectrum:

- 3 maxima from hole traps
- 1 minimum, most likely from surface/interface states

trap parameters (Vbias=+5V; Vf=+1V):

Defect	Temp (K)	Ea (eV)	Sigma (cm2)	Defect concentration (cm-3)	-0
H47	47	0.069	6.87E-17	2.49E10	-0
H158	158	0.294	4.35E-16	9.32E11	
Z197	197	0.439	1.85E-14	2.90E11	
H285	285	0.611	3.76E-15	1.32E11	

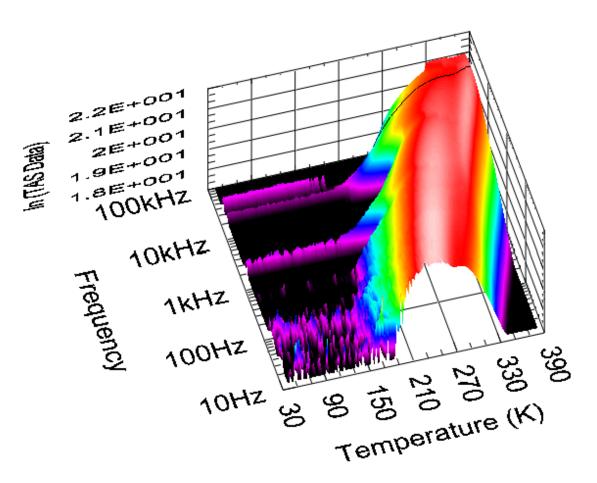


DLTS measurements: Schottky diode @Semetrol

DLTS spectrum:

- peak with 2 majority carrier traps
- 'minority' carrier trap
 ⇒ vanishes for reduced + shorter
 filling pulse
 ⇒ surface/interface states likely
- large majority carrier trap for larger filling pulses at room temperature

Midpoint temp (K)	E _t (eV)	Sigma (cm ²)	N _t /N _s
170	0.312	5.5E-15	7.8E-3
180	0.294	3.3E-16	2.2E-2

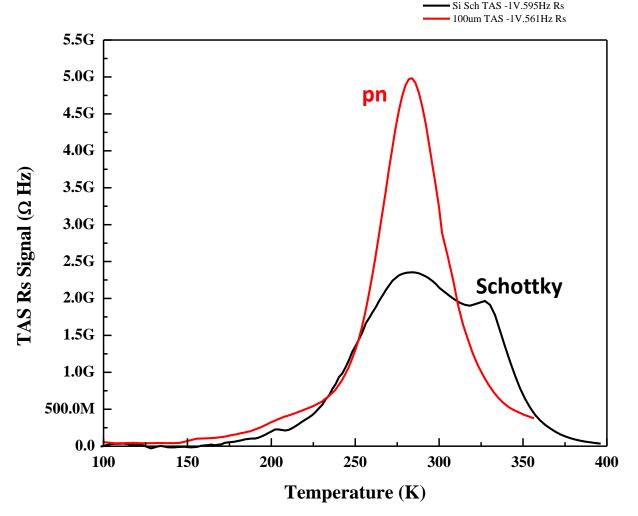


Thermal Admittance Spectroscopy (TAS)

 samples characterized with other spectroscopic techniques @Semetrol (DDLTS, IDLTS, IVT, PICTS, TAS)

<u>TAS:</u>

- measure capacitance C and conductance G as function of frequency and temperature
- defect contribution to C/G depending on test signal frequency and temperature
- steps in C or peak in G for thresholds
- steady-state measurement
- applicable for low-doped or high-resistivity materials, complements DLTS



Thermal Admittance Spectroscopy (TAS)

TAS analysis:

- higher trap energy in Schottky for similar peak
- second Schottky trap near mid-gap
- energy shift at different test voltages
 > field dependence of trap energy
 - > might explain difference between Schottky and pn-junction (higher E-fields in pn diode)

Sample	V _{bias}	E _t (eV)	σ (cm²)
PN	-1V	0.384	1.1E-16
Schottky	-1V	0.498	1.6E-14
Schottky	-2V	0.467	3.0E-15
Schottky	-1V	0.664	3.5E-13
Schottky	-2V	0.614	3.7E-14

