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The need for Ultra Fast Silicon Detectors
• HL-LHC: Pile-up is one of the major challenges for tracking
• Detectors with high granularity for spatial measurement with added high 

resolution time measurement (4D tracking)
• Timing information used to disentangle overlapping events
• ATLAS High-Granularity Timing Detector placed outside the ITk
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Low Gain Avalanche Detectors (LGAD)
• Aim: Track timing resolution of ≈30-50 ps over detector lifetime 
• Boron implantation forms gain layer (p+) -> impact ionization
• Time resolution of LGAD benefits from high slew rate, which is increased by 

introducing internal gain G
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PiN diode LGAD



Teledyne e2v LGAD project
• Epitaxial layer: 50 um, high resistivity

• Boron as the gain layer dopant
• 8 different combinations of manufacturing parameters

• Each field contains LGADs and PiN diodes of 
the same layout (4 mm, 2 mm, 1 mm)
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Wafer code Implant dose
(normalised)

Implant energy
(normalised)

A 1.07 1.11

B 1.07 1.05

C 1.07 1.00

D 0.92 1.05

E 1.15 1.05

F 1.00 1.00

G 1.00 1.05

H 1.00 1.11

6” wafer



LGAD Simulation I
• Fabrication steps of the devices simulated using TCAD tool from Synopsis
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LGAD Simulation II
• Electrical simulation setup, common to PiN and LGAD, with RC network

• Bulk radiation damage not included in this iteration, 
but effects of Si-SiO2 surface states have been modelled
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P-stop GRMIP

* Qcollected = ∫ Irin [5 ns]

Irin [A]

GR

5 ns Transient current following a MIP hit through centre @ 100nsHIT

1 mm cathode device



Wafers of interest
• Variation of behaviour with 

implant energy (dose constant)
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Measured 5 LGADs and 5 PiNs
(consistent colour coding used throughout)

Wafer code Implant dose
(normalised)

Implant energy
(normalised)

A 1.07 1.11

B 1.07 1.05

Parameters normalised to a reference dose
and energy of the implant



Characterization of wafers – IV data
4 mm devices
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Wafer A (higher implant energy)

LGAD breakdown voltage ≈250 V LGAD breakdown voltage ≈450 V

“soft-breakdown”

T = 21°C

Wafer B



Characterization of wafers – IV data
2 mm devices
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Wafer A (higher implant energy) Wafer B

LGAD breakdown voltage ≈280 V LGAD breakdown voltage ≈420 VT = 21°C



Characterization of wafers – CV data
4 mm devices
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Gain layer depletion voltage ≈30 V Gain layer depletion voltage ≈25 V

Wafer A (higher implant energy) Wafer B

T = 21°C



Characterization of wafers – CV data
2 mm devices
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Gain layer depletion voltage ≈30 V Gain layer depletion voltage ≈25 V

Wafer A (higher implant energy) Wafer B

T = 21°C



Concentration inference
• Inferred from capacitance measurement using Profiler’s Equation

Relates to majority carrier density rather than doping
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Laser dicing of wafers
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Custom-made 3D printed frame to keep sensors in place
and allow for direct comparison pre- and post-dicing

• Laser dicing
• λ = 1028 nm
• Power: 10 W
• Beam size: 25 x 25 um2



Post-dicing treatment - thermal annealing
• Suspected surface states formed after wafer dicing 

• Detrimental effects: lower breakdown voltage, soft-breakdown behaviour

• Previous behaviour recovered by thermal annealing (conditions: 2 hours at 150°C)
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Before annealing After annealing

Temp range: 21.5 - 22.3°C
Humidity range: 35.9 - 40.8%

Temp range: 21.1 - 21.1°C
Humidity range: 44.5 - 46.8%

4 mm 4 mm



Summary
• Ultra-fast silicon detectors required for 4D tracking and disentanglement of overlapping 

interactions

• First batch of LGAD devices designed, simulated and produced in collaboration with 

Teledyne e2v

• Devices being tested at Oxford, Birmingham and Rutherford Appleton Laboratory

• Observed that higher gain layer implant energy leads to lower breakdown voltage and 
higher gain layer depletion voltage

• Post-dicing treatment required (thermal annealing)

More on irradiation and gain measurements can be found in the presentation by 
Jonathan Mulvey @14:45 (CERN time)

22/06/2021 Martin Gazi, 38th RD50 Workshop 16



22/06/2021 Martin Gazi, 38th RD50 Workshop 17



Backup – Simulated cross-section
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Cathode GRGRCell edge Cell edge
P-stopP-stop

• 2 implantation models implemented: 
• MC (1e5 runs) using BCT 

with modified parameters 
• Pearson IV (analytical)

E lost by BC by Nucl. Scattering 
custom factor a (=1 default)

xa

Multi-body collisions for crystal [0.25,1] 
lattice constant assume d=1



Backup – Traps inclusion
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* Effects of Interface Donor Trap States on Isolation Properties of Detectors 
Operating at High-Luminosity LHC, DOI: 10.1109/TNS.2017.2709815

Fixed oxide-charge density and interface traps included
Interface traps distributed among 3 energy levels, 
Gaussian , s = 70 meV
Ratio Oxint/Oxch ~ 0.9VB

CB



Backup – CV profiling and doping I

• Plots of doping and carriers concentration 
for WF2 at Vbias= 0 V

• HP: xj:=depletion width 

• For x>xj p concentration differs from doping 
concentration Na, due to diffusion

• For x< xj assume depletion
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Xj= depl. width



Backup – CV profiling and doping II
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Assume: Surface charge and Potential (L = length of the device) 

Take differentials from [1] and [2] w.r.t. xj:

Assume Φs ≈ Vs , take derivative of Cs and solve for p in [3]:

[3]

i.e. the usual ‘profile equation’ showing that what is sampled is p, not Na


