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Introduction



Neutron detection
Neutron detectors are not vertex detectors!

o Lower energies (typically below 10 MeV)

o Low rates and fluxes

o Should be photons insensitive
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Classification Energy

Cold < 0.012 eV

Thermal 0.012 eV - 0.4 eV

Epithermal 0.4 eV – 0.01 MeV

Fast 0.01 MeV – 20 MeV

High Energy > 20  MeV

Neutrons need conversion into charged particles 
to be detected

• Recoil (high energies)

• Induced fission

• Nuclear capture by elements with A > 40 (passive) 

• Nuclear capture by light elements



Field of application: neutron imaging
Neutron Imaging is a radiographic non- destructive method. 

It exploits neutrons ability to penetrate materials with 
attenuation coefficients specific for each material (isotope).
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Xrays (top) and neutrons (bottom).

Image taken from PSI website. 

In this field are employed 

o cold or thermal neutrons beams 

o Fluxes in the order of 105-109 n/(cm2s)

Normally, images are shot using neutron cameras

o Maximum resolution ever achieved of circa 14 μm, 
normally around 100 μm

o Camera integration time is around 1-2 s
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How to detect thermal neutrons
Given the high cross section, traditional methods to detect thermal neutrons rely on neutron 
capture and subsequential detection of secondary charged particles with scintillators or gases.

Excluding fissionable isotopes and materials which don’t provide good neutron-photon 
discrimination, the main useful thermal capture reactions are 
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3
10𝐵 + 𝑛 → 𝛼 + 3

7𝐿𝑖

3
6𝐿𝑖 + 𝑛 → 1

3𝐻 + 𝛼

2
3𝐻𝑒 + 𝑛 → 1

3𝐻 + 𝑝

Q = 2.79 MeV

Q = 4.78  MeV

Q = 764 keV

3
10𝐵 + 𝑛 → 𝛼 + 3

7𝐿𝑖* Q = 2.31 MeV

3840 barn @ 25 meV

940 barn @ 25 meV

5330 barn @ 25 meV

• High Q-value, good photons rejection

• Solid compounds (i.e. LiF and LiI)

• Easy to enrich – relatively cheap
Most employed with silicon devices
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Neutron Detection with Silicon Sensors



Silicon detectors and 6Li
At INFN LNF (Laboratori Nazionali di Frascati) Roberto Bedogni’s team is successfully using a LiF
deposition technique to assemble silicon neutron detectors. It consists in:

o Suspension with 6LiF enriched powder 

o Evaporation process 

The method is quite simple, cheap and provides a good reproducibility
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S3590-09 Hamamatsu 
Diode

Area 1 cm2

SgLux UV photodiodes
Silicon carbide

Area 7.2 mm2
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Diodes sensitive to neutrons
The detectors are assembled, wired and tested by the 
LNF group. The testing is carried out in the Hotnes
facility.

Most recently, a set of diodes with 6LiF deposit have been 
studied and produced for the NCT-WES project.

Both experimental and simulation results show that the 
maximum efficiency is achieved with 34 µm thick 6LiF 
deposition on the diode surface

Extremely good for beam monitoring and neutron 
spectroscopy (inside Bonner Spheres), but not for 
position and time measurements.
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Efficiency results obtained with a LiF coated detector in 

the Hotnes facility.

38th RD50 Meeting



Our Project:
RSDs for neutron detection



Combining RSD with 6LiF

p++ electrode

AC coupling oxide

Resistive  n+ electrode

Gain layer
50 μm

6LiF Layer

30 μm n

The alpha particle or the trizium nucleus are 

detected in the RSD

a
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AC-LGADs with LiF coating
AC-LGADs with LiF coating: an innovative neutron detector!

o Great timing performances, 40-50 ps

o Optimal spatial resolution, some µm for MIP protons

o LGAD multiplication provides optimal signal/noise

o Carbonated gain implant provides radiation resistance

o Intrinsic photon rejection
• Photons with energy greater than 20 keV are very unlikely to 

generate signals in 55 µm thick sensors (1000 µm absorption 
length)

o Alphas are completely absorbed (15 µm range in silicon)
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AC-LGADs with LiF in practice
For this first trial three different types of detectors were 
employed: 50-100, 100-200 and 200-500 FBK AC-LGADs.

Practically, coating these sensors proved difficult because of the 
many bonds.

Therefore 
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o Bonded the sensors to a 16 channels FNAL board

o Glued 3D printed containment walls outside the bonds area

o Sent the boards to the Frascati Labs to do the 6LiF deposition

Work in progress! We should receive them back by the 
end of June
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Detector testing
Detectors will be tested in the Turin Thermal Neutron Source.  

1422 June 2021

L
u

c
a

 M
e

n
z
io

 –
IN

F
N

 T
o

ri
n

o

Based on the Elekta SL18 Precise Linac.

Accelerates electrons (up to 18 MeV) and can 
be operated in photon mode

A photoconverter provide a testing region with 
thermal neutrons

Maximum fluence rate:

ሶΦ𝑡ℎ = 1.75 ± 0.04 106 𝑛 𝑐𝑚−2 𝑠−1
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Conclusions
Our group is currently developing a method to detect thermal neutrons with the RSD devices, 
possibly for neutron imaging.

This detector would provide

o Good radiation resistance 

o LGAD-like timing resolution

o Spatial resolution of few microns

First experimental tests are going to be carried out in the next future!
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Thank you!
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Photon absorption length in silicon

2138° RD50 Meeting22 June 2021

L
u

c
a

 M
e

n
z
io

 –
IN

F
N

 T
o

ri
n

o



2238° RD50 Meeting22 June 2021

L
u

c
a

 M
e

n
z
io

 –
IN

F
N

 T
o

ri
n

o







6LiF

Black PVC

Transparent PVC

Aluminium

Dedicated measure for the 
determination of  the optimal  
6LiF thickness = 30 µm

25

𝜎𝑡ℎ(25𝑚𝑒𝑉) [
6𝐿𝑖 𝑛, 𝛼 3𝐻] = 940 𝑏

TNPD
(Thermal Neutron Pulse Detector)

How do we measure thermal neutrons?
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Absolute comparison between 
experiment and simulation
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Results

ሶ𝑁𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

ሶ𝑁𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛

= 1.01 ± 0.02

My work

ሶ𝑁𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝜀𝑇𝑁𝑃𝐷 ∙ ሶ𝑁6𝐿𝑖(𝑛,𝛼)3𝐻


