LGAD irradiated with $10^{19} 1 \mathrm{MeV}$ n/cm 2 - HRTEM annealing studies up to $350^{\circ} \mathrm{C}$

A. Kuncser, I. Pintilie

INTRODUCTION

- A LGAD sample irradiated at a fluence of $10^{19} 1 \mathrm{MeV}$ neutrons $/ \mathrm{cm}^{2}$
- Around room temperature: Point defects (vacancies and interstitials) expected to be present in the Si
- At high temperatures (100C-300C): A clustering of point defects has been predicted by electric measurements

THE TASK

- Investigate the potential presence of defects (by TEM)
- Investigate a potential evolution of defects with temperature (by TEM)

THE CHALLENGES

- Prepare the sample
- Avoid or minimize electron beam induced defects.

Instrumentation

Instrument:

- JEOL 2100 Transmission Electron Microscope
- LaB6 electron gun (brightness much lower than field-emission gun)
- High-resolution polar piece
- Low convergence of electron beam

Sample preparation:

- Standard XTEM (cross sectional) method, but heating avoided.
- Glue was dried at RT
- Gatan PIPS used for final thinning stages

Neutrons vs electrons

For JEOL 2100 @ 800kx
$\rho=32 * 10^{-12} \frac{\mathrm{~A}}{\mathrm{~cm}^{2}}=2 * 10^{7} \frac{\text { electrons }}{\mathrm{cm}^{2} \mathrm{~s}}$
for 100 s observation time , total dose $D=2 * 10^{9} \frac{\text { electrons }}{\mathrm{cm}^{2}}$
! Electron dose is much lower than neutron dose.
Moreover, the electrons are accelerated at only 0.2 MeV .
! The electron irradiated sample is very thin (roughly 50 nm) - NOT Bulk Sample
! It has been shown in literature that TEM may induce defects in Si .

> TEM investigantions need to be performed with caution.... And they have been!

NIMP
SCIENTIFIC RESEARCH

Initial state

Thermal annealing- HRTEM images @800kx

Thermal annealing- HRTEM images @800kx

Observations/Conclusions

- Point defects have been observed at RT and whole thermal annealing series
- Point defects tend to organize in tracks normal to the interface
- At higher temperatures point defects tend to group in large clusters

NIMP
SCIENTIFIC RESEARCH

Perspectives

- A TEM specimen will be will be freshly prepared
- Higher annealing temperatures (up to 450 C) will be tackled

Thank You!

