

LGAD irradiated with 10¹⁹ 1MeV n/cm² - HRTEM annealing studies up to 350 °C

A. Kuncser, I. Pintilie

INTRODUCTION

- A LGAD sample irradiated at a fluence of 10¹⁹ 1MeV neutrons/cm²
- Around room temperature: Point defects (vacancies and interstitials) expected to be present in the Si
- At high temperatures (100C-300C): A clustering of point defects has been predicted by electric measurements

THE TASK

- Investigate the potential presence of defects (by TEM)
- Investigate a potential evolution of defects with temperature (by TEM)

THE CHALLENGES

- Prepare the sample
- Avoid or minimize electron beam induced defects.

Instrumentation

Instrument:

- JEOL 2100 Transmission Electron Microscope
- LaB6 electron gun (brightness much lower than field-emission gun)
- High-resolution polar piece
- Low convergence of electron beam

Sample preparation:

- Standard XTEM (cross sectional) method, but heating avoided.
- Glue was dried at RT
- Gatan PIPS used for final thinning stages

Neutrons vs electrons

For JEOL 2100 @ 800kx

 $\rho = 32 * 10^{-12} \frac{A}{cm^2} = 2 * 10^7 \frac{electrons}{cm^2 s}$ for 100 s observation time, total dose $D = 2 * 10^9 \frac{electrons}{cm^2}$

Electron dose is much lower than neutron dose. Moreover, the electrons are accelerated at only 0.2 MeV.

The electron irradiated sample is very thin (roughly 50 nm) – NOT Bulk Sample

It has been shown in literature that TEM may induce defects in Si.

TEM investigantions need to be performed with caution.... And they have been!

Initial state

Thermal annealing- HRTEM images @800kx

Thermal annealing- HRTEM images @800kx

Observations/Conclusions

- Point defects have been observed at RT and whole thermal annealing series
- Point defects tend to organize in tracks normal to the interface
- At higher temperatures point defects tend to group in large clusters

- A TEM specimen will be will be freshly prepared
- Higher annealing temperatures (up to 450C) will be tackled

Thank You!