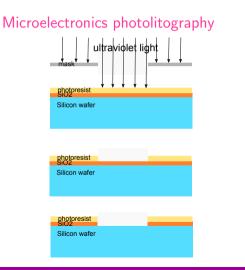


Performance of Stitched Passive CMOS Strip Sensors


M. Baselga, L. Diehl, I-M Gregor, T. Hemperek, J-C Hönig, S. Mädgefessel, U. Parzefall,

A. Rodriguez, S. Sharma, D. Sperlich, T. Wang, L. Wiik-Fuchs

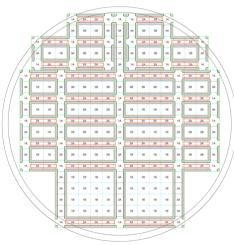
Motivation Why passive CMOS detectors?


Large area detectors are limited to microelectronics foundries

> This project wants to study the production of strip sensors in a CMOS foundry

Picture of the petal, ATLAS endcap substructure. The silicon strip sensors have an area around $10{\times}10\,{\rm cm}^2$

What changes regarding microelectronic foundries? Photolitography

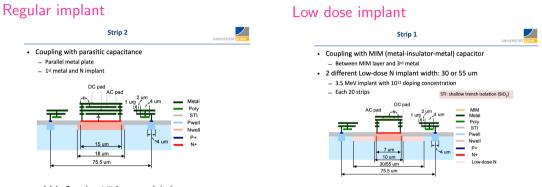

CMOS photolitography ultraviolet light lens with the photoresist Silicon wafer photoresist Silicon wafer photoresist Silicon wafer

Semiconductor
device fabrication
Tabrication
MOSFET scaling
(process nodes)
10 µm – 1971
6 μm – 1974
3 μm – 1977
1.5 μm – 1981
1 µm – 1984
800 nm – 1987
600 nm – 1990
350 nm – 1993
250 nm - 1996
180 nm – 1999
130 nm – 2001
90 nm – 2003
65 nm – 2005
45 nm – 2007
32 nm – 2009
22 nm - 2012
14 nm – 2014
10 nm - 2016
7 nm – 2018
5 nm – 2020
Future
3 nm ~ 2022
2 nm ~ 2023

[Image from wikipedia]

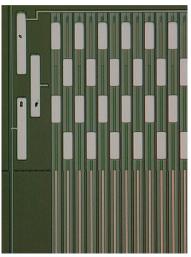
Passive CMOS strips

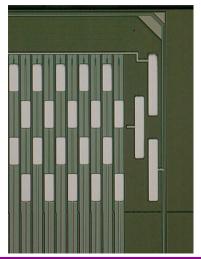
Mask for passive CMOS fabrication


Passive CMOS strips project

 Collaboration with Uni Freiburg, Uni Bonn and DESY

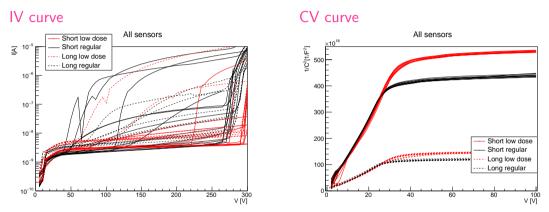
- Fabricated in LFoundry with 150 nm
- It has strip and pixel sensors (pixel presentation by Yannick Dieter)
- Reticles are around 1 cm²
- 1A and 2A are the strip (1A is the bottom and top of the strip)
- Strips are 2 cm² and 4 cm² long


Strip designs. Sensors have two flavours (acctually they are 3)

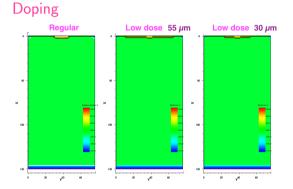

- ▶ Wafer is 150 µm thick
- There are 2 strip sensors which 40 strips each
 - 1. 40 regular implant strips
 - 2. 40 low dose implant strips (20 strips with $30 \,\mu m$ and 20 strips with $55 \,\mu m$)

Pictures of the stitching

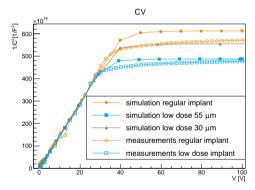
Regular implant



Low dose implant

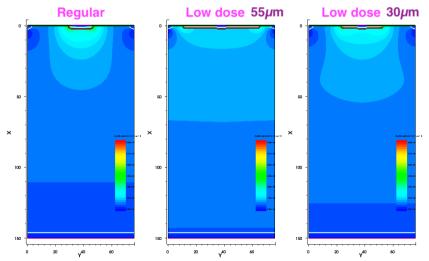


$\ensuremath{\mathsf{IV}}\xspace$ and $\ensuremath{\mathsf{CVs}}\xspace$



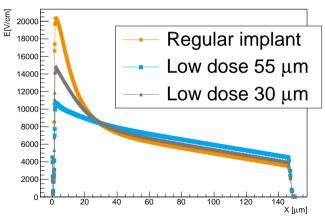
- ▶ The detectors show good electrical performance till breakdown 300 V
- Due to differences of the strips, they show differences with the CVs
- They have full depletion at 30 V and 36 V

TCAD simulations

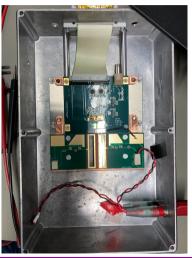


CV comparison

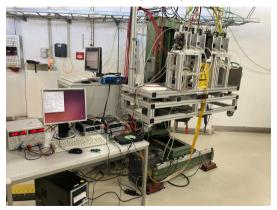
TCAD simulation


Electric field

TCAD simulation

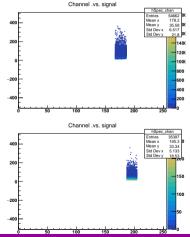

Electric field at 100 V

Electric field in the center of the strip

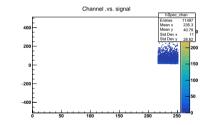


Testbeam at DESY (done in April 2021)

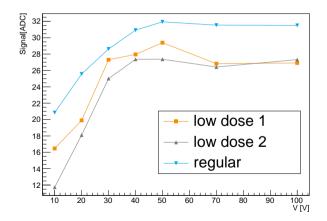
Sensor setup with ALiBaVa



Testbeam at DESY (TB22)

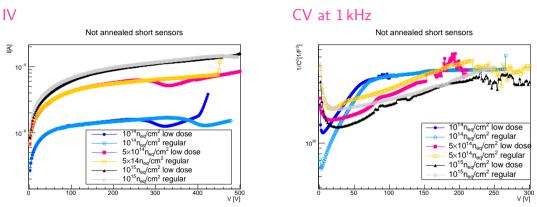

Output from alibava at $100 \, \text{V}$

The channels are separated for the three different sensor flavours


Low dose implant (separated 20 strips)

Regular implant

Preliminary results of testbeam Alibava data DESY testbeam (using 4.6 GeV electrons)


Alibava signal (Preliminary), not including telescope data

Preliminary results

- Regular and low dose implant have different signal, calibration needs to be done
- Full reconstruction of the testbeam data ongoing

Short sensors irradiated with protons at KIT ($23\,MeV)$ $_{Measured at -20\,^\circ\text{C}}$

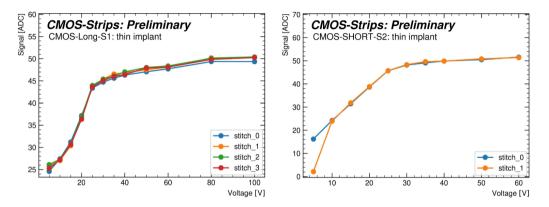
 Annealing steps needs to be followed but they show good behaviour after irradiation

Freiburg University colleagues are investigating neutron irradiated samples

Future steps

Conclusions

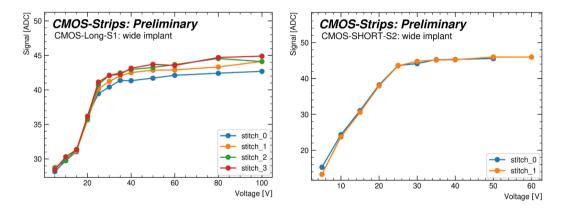
No negative effects from stitching so far, first IV's and CV's after irradiation do not show any problem


Future steps

- Further electrical studies of the irradiated samples
- Test with a radioactive source
- Testbeam with the irradiated sensors

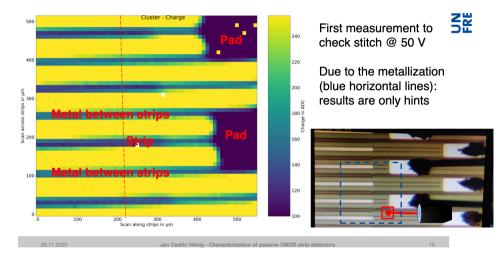
The measurements leading to these results have been performed at the Test Beam Facility at DESYHamburg (Germany), a member of the Helmholtz Association (HGF).

backup

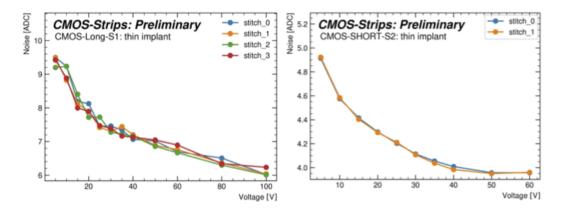

Alibava measurements regular sensor

[Arturo Rodriguez, Trento meeting 2021]

- Measurements taken with an ALiBaVa setup with Sr⁹⁰ source at 4 different stitching points of the sensors
- No effect of stitching

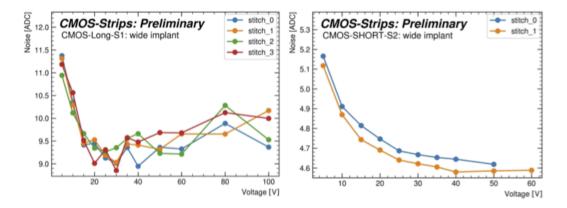

Alibava measurements low dose

[Arturo Rodriguez, Trento meeting 2021]

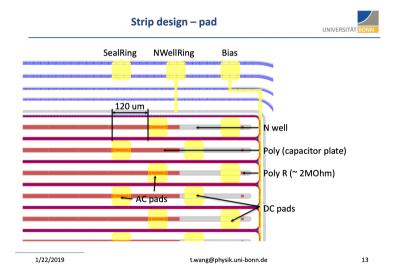

Probably some difference due to higher noise of the sensor (noise plot in backup slides)

TCT measurements

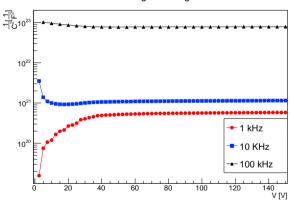
[Cedric Hoenig, RD50 2020]


Alibava measurements \rightarrow Noise

No effect of stitching


[Arturo Rodriguez, Trento meeting 2021]

Alibava measurements \rightarrow Noise



More difference in the regions, maybe due to higher noise [Arturo Rodriguez, Trento meeting 2021]

Strips layout

CV measurement with frequency

Regular design