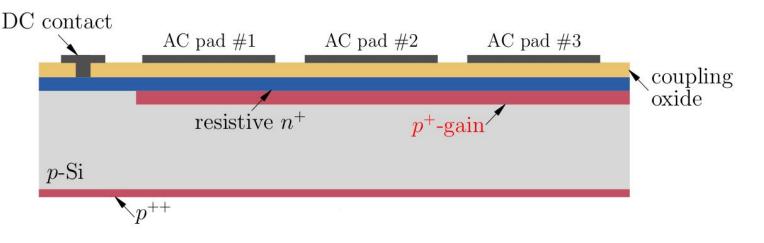
A new testing system for multipad RSD sensors based on the new FAST2 ASIC

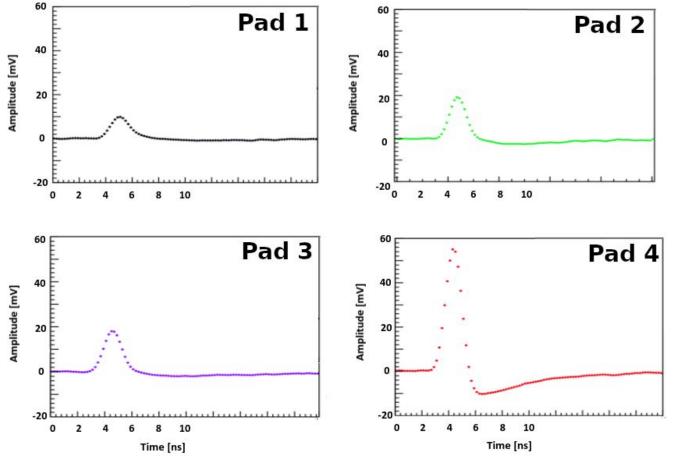
Development of a comprehensive software solution

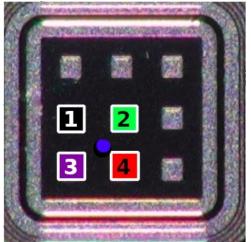

Miserocchi F. and the UFSD group, Torino

Outline

- 1. Sensors: RSDs and their distinctive distributed signal
- 2. **Front-end**: the FAST2 family of ASICs
- 3. The data acquisition system of RSD+FAST2 demonstrator
- 4. First examples of event acquisition
- 5. Summary and outlook

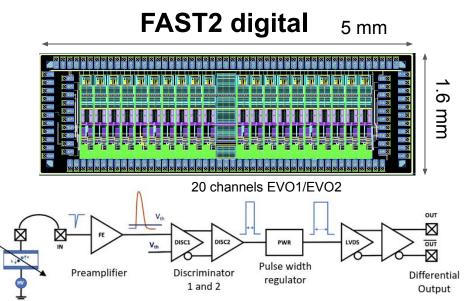
Intro to RSDs: what and how


- AC coupled LGADs
- Feature distributed AC pads that capacitively couple with the *n*+ layer
- Segmented readout happens on the metal pads, allowing for full coverage of gain layer


Intro to RSDs: why

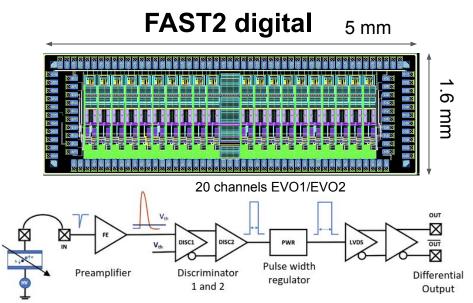
- Signal sharing is desired, can be leveraged to obtain very good spatial resolution
- Data obtained presents itself well to machine learning algorithms (Siviero et al., 2021)
- Need to concurrently measure as many pads as possible to get the best training data
- Need to characterize the device at different bias voltages
- Need to evaluate the relationship between signals on the pads and incident particle position

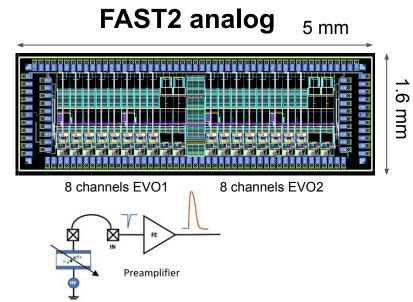
Intro to RSDs: signal sharing example


50 um thick RSD, gain ~20

The laser is shot at the position of the blue dot: the signal is seen in 4 pads

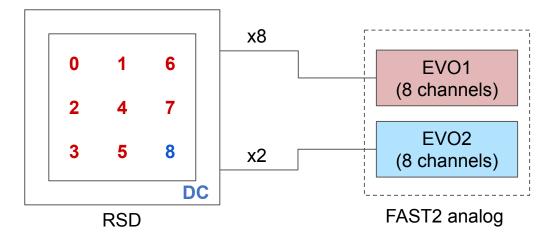
FAST2: a new front-end ASIC

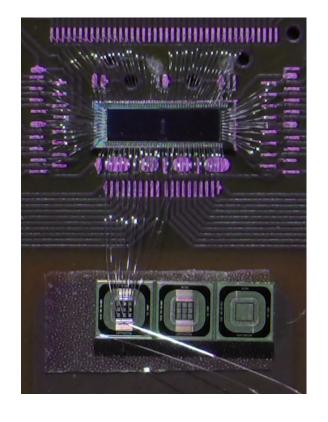

Recently developed in Torino and manufactured using 110 nm node process. The IC is available in two families:

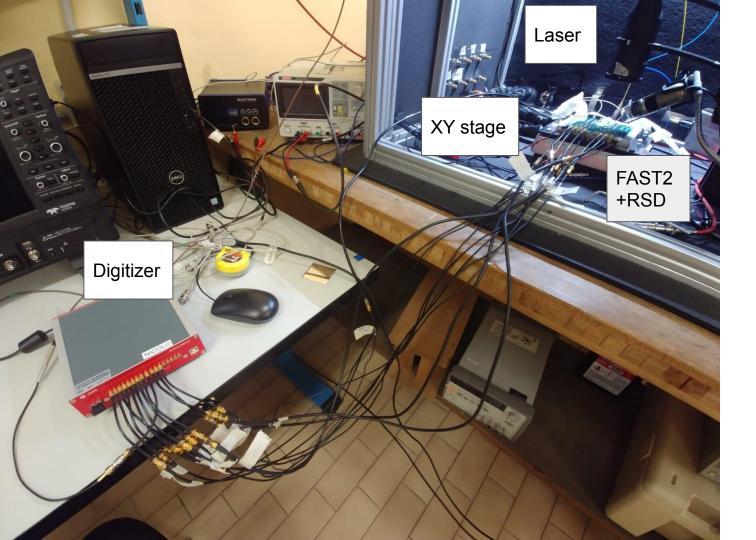

- EVO1 and EVO2 flavors feature different amplification stages design
- Threshold discriminator
- Digital output

FAST2: a new front-end ASIC

Recently developed in Torino and manufactured using 110 nm node process. The IC is available in two families:

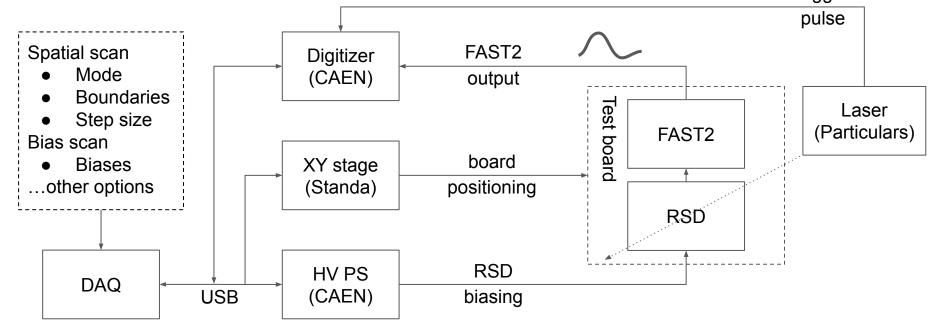

- EVO1 and EVO2 flavors feature different amplification stages design
- Threshold discriminator
- Digital output



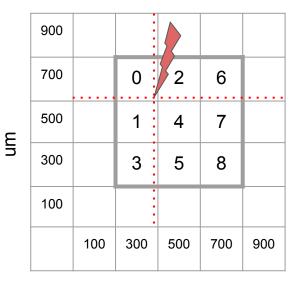

- 8 EVO1 and 8 EVO2 channels
- Single-ended buffered analog output with signal polarity inversion

Combining RSDs and FAST2

- Need to characterize the readout chain as a whole, moving towards 4D tracking
- First results from 3x3, 100-200 µm pitch RSD topology coupled with FAST2 analog
- Pads 0 to 7 using EVO1 amplifier design, pads 8 and DC connected to EVO2

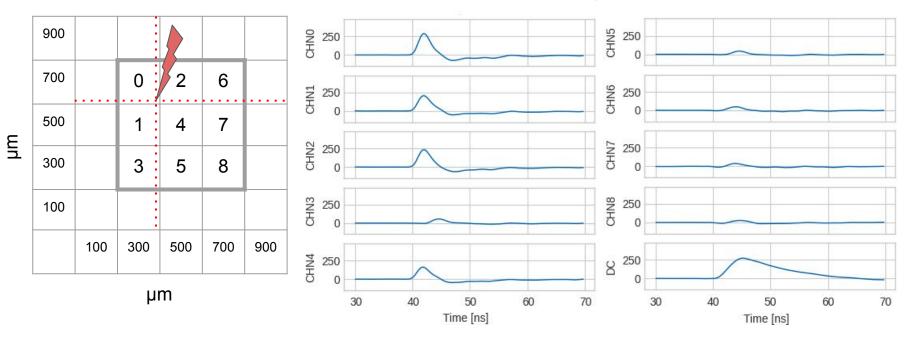

Experimental setup

- Digitizer
- TCT equipment
- Test board

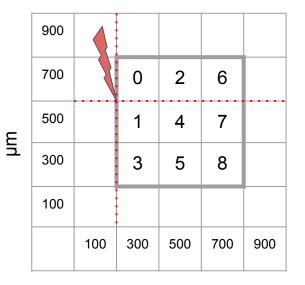

Automatic data acquisition

- Transient Current Technique (TCT) used to simulate incident MIPs
- XY stage controls laser pulse delivery (e.g.: 1000x1000 µm² grid, 10 um step)
- Front-end output sampled by digitizer, 9 channels + DC pad
- Completely autonomous and configurable scanning capabilities

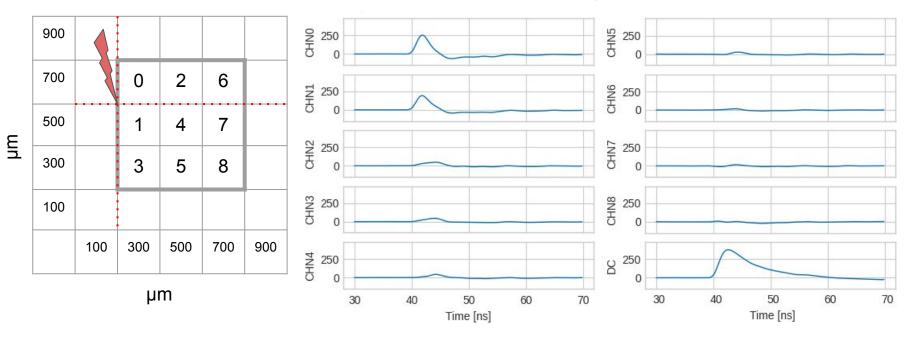
trigger



Results: raw waveforms at different locations

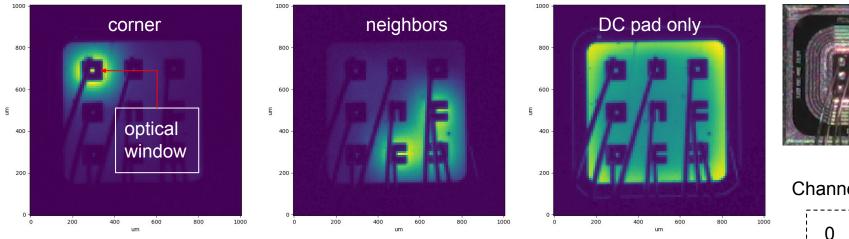

um

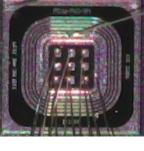
Results: raw waveforms at different locations


100 event average @ (390, 610) µm

Results: raw waveforms at different locations

μm


Results: raw waveforms at different locations


100 event average @ (200, 600) µm

DC channel rising earlier with respect to other location due to pulse being delivered closer to DC ring, displacement current across the oxide is significantly higher

Results: single- and multi-channel heatmaps

- 1. Laser pulses are delivered across the whole sensor, scanning a 1x1 mm^2 area with 10 μ m step size
- 2. Each pad (channel) is sampled concurrently, output waveforms are stored on a per-channel, per-event basis
- 3. Waveforms belonging to the same channel and position are averaged
- 4. Color lightness for each "pixel" is evaluated by calculating the peak amplitude for the averaged waveform at that location and channel
- 5. Lightness matrices relative to different channels are summed together

mm

Channel map:

	0 1 3	2 4 5	6 7 8				
DC							

Summary

- We have fed the RSD distributed signal to FAST2 analog, a fully custom 16 channel front-end ASIC
- The output of the ASIC is read by a commercial 5 GS/s digitizer
- A software acquisition system has been developed to allow for fully autonomous mapping of the RSDs' performance
- Sensors are tested using TCT, scanning over the whole device's area
- Output data is saved in a ROOT file to allow for easy analysis

Summary

- We have fed the RSD distributed signal to FAST2 analog, a fully custom 16 channel front-end ASIC
- The output of the ASIC is read by a commercial 5 GS/s digitizer
- A software acquisition system has been developed to allow for fully autonomous mapping of the RSDs' performance
- Sensors are tested using TCT, scanning over the whole device's area
- Output data is saved in a ROOT file to allow for easy analysis

Outlook

- The new system allows for mapping the distributed signal of RSDs
- It will be used to characterize the new geometries implemented in the forthcoming new RSD production RSD2
- The laser data obtained is ideal to train the NN algorithm developed to optimize RSD performance

Thank you for your attention!

Question time

Bibliography

Mandurrino, M., et al. "First Demonstration of 200, 100, and 50 Um Pitch Resistive AC-Coupled Silicon Detectors (RSD) with 100% Fill-Factor for 4D Particle Tracking." IEEE Electron Device Letters, vol. 40, no. 11, Nov. 2019, pp. 1780–83. arXiv.org, doi:10.1109/LED.2019.2943242.

Mandurrino, M., Marco Mandurrino, Ph.D. – Detector Designer. http://personalpages.to.infn.it/~mandurri/rsdproject.html.

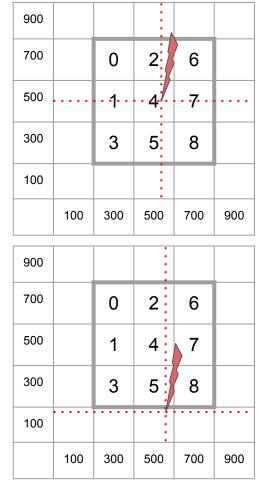
Siviero, F., Arcidiacono, R., Cartiglia, N., Costa, M., Ferrero, M., Legger, F., Mandurrino, M., Sola, V., Staiano, A., & Tornago, M. (2021). First application of machine learning algorithms to the position reconstruction in Resistive Silicon Detectors. Journal of Instrumentation, 16(03). https://doi.org/10.1088/1748-0221/16/03/p03019

Olave, E. J., Fausti, F., Cartiglia, N., Arcidiacono, R., Sadrozinski, H. F.-W., & Amp; Seiden, A. (2021). Design and characterization of the FAST chip: a front-end for 4D tracking systems based on Ultra-Fast Silicon Detectors aiming at 30 ps time resolution. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 985, 164615. https://doi.org/10.1016/j.nima.2020.164615

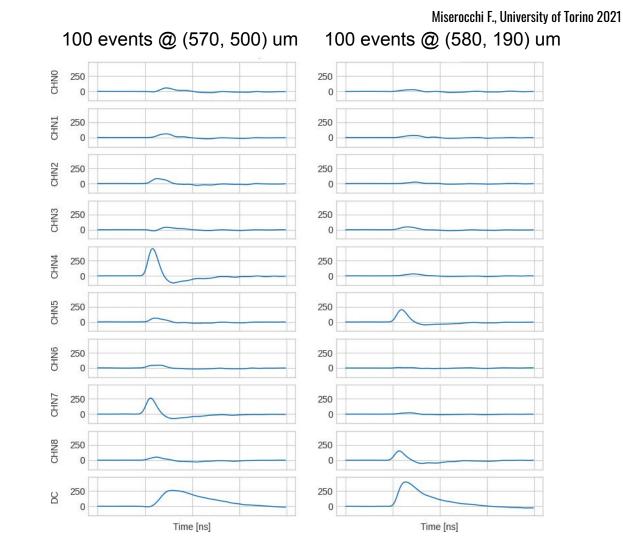
Fausti, F., Olave, J., & Cartiglia, N. (2020). FAST: a 30 ps time resolution front-end ASIC for a 4D tracking system based on Ultra-Fast Silicon Detectors. Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2019). https://doi.org/10.22323/1.370.0023

Acknowledgements

We kindly acknowledge the following funding agencies, collaborations:

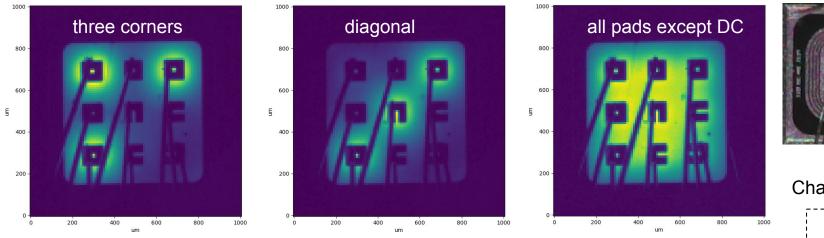

- INFN Gruppo V, UFSD and RSD projects
- INFN FBK agreement on sensor production (convenzione INFN-FBK)
- Horizon 2020, grant UFSD669529
- Dipartimenti di Eccellenza, Univ. of Torino (ex L. 232/2016, art. 1, cc. 314, 337)
- Ministero della Ricerca, Italia, PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- Ministero della Ricerca, Italia, FARE, R165xr8frt_fare

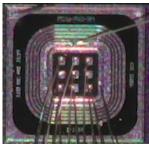
Data analysis workflow


- To guarantee maximum acquisition speed, sampled waveforms are stored raw as ROOT TTrees (~100 GBs)
- 2. C++ script is used to extract waveform features such as peak height, rise time and total charge (~10 MBs)
- 3. Features are then applied to subsequent analysis

Instrumentation

- Particulars TCT setup with integrated <u>Standa 8MTF</u> motorized XY stage and Particulars PC-controlled IR laser
- CAEN DT5742 16+1 channel 12 bit 5 GS/s digitizer
- **CAEN DT1471ET** 4 channel high voltage power supply


um


Ш

Ш

Results: single- and multi-channel heatmaps

- 1. Laser pulses are delivered across the whole sensor, scanning a 1x1 mm^2 area with 10 μ m step size
- 2. Each pad (channel) is sampled concurrently, output waveforms are stored on a per-channel, per-event basis
- 3. Waveforms belonging to the same channel and position are averaged
- 4. Color lightness for each "pixel" is evaluated by calculating the peak amplitude for the averaged waveform at that location and channel
- 5. Lightness matrices relative to different channels are summed together

mm

Channel map:

	0 1 3	2 4 5	6 7 8				
DC							