

Full-size passive CMOS sensors for radiation tolerant hybrid pixel detectors

RD50 Meeting, 21.06.2021

Yannick Dieter, M. Backhaus, M. Daas, J. Dingfelder, T. Hemperek, F. Hügging, A. Macchiolo, D. Münstermann, D.-L. Pohl, M. Vogt, T. Wang, N. Wermes, P. Wolf

Physikalisches Institut der Universität Bonn

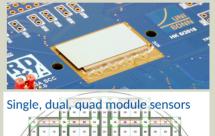
PASSIVE CMOS SENSORS USING LFOUNDRY PROCESS

Large pixel prototype

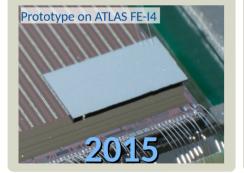
- 50 x 250 um² pixels, ATLAS IBL planar geometry
- Performance comparable to ATLAS IBL sensors after irradiation
 > 1 x 10¹⁵ neq/cm²
- Investigation of AC-coupling schema, pixel biasing schemes (bias dot vs. resistor biasing)

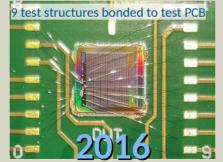
Test structures

- Many structures produced (> 15)
- Varying designs: guard rings, pixel isolation, implantation geometries
- Investigations of break down with TID (2 master theses)
- \rightarrow Identified enhanced guard ring structure
- Investigation of sensor capacitances (2 bachelor theses)


Small pixel prototype

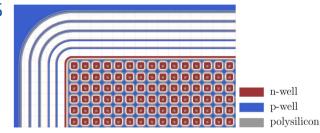
• 50 x 50 um² pixels, ATLAS ITk pixel geometry

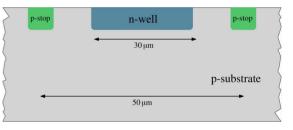



Sensor for ATLAS ITk modules

- 50 x 50 um^2 and 25 x 100 um^2 pixels
- Full-size ATLAS ITk pixel modules
- RD53A and RD53B compatible

30 30


Byproducts of DMAPS efforts

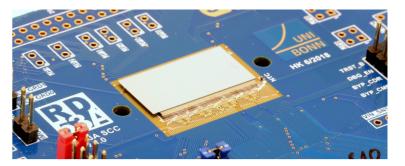

This talk Dedicated design

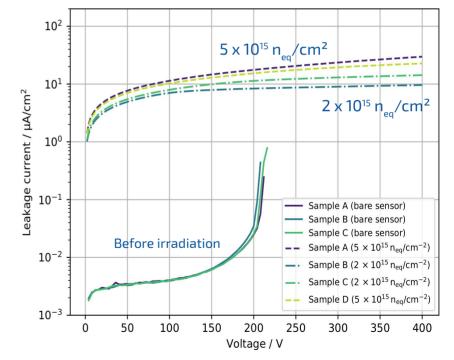
OVERVIEW: FULL-SIZE ITK SUBMISSION

- Passive CMOS pixel sensor in 150 nm LFoundry technology for ATLAS-ITk/CMS
- Float-Zone wafers: 7 8 kΩcm resistivity
- 150 um thick, incl. etching, backside implantation and metallization
- Reticle stitching used in order to obtain large sensors
- RD53-sized:
 - RD53A single/double sensors and RD53B quad sensors
- Different pixel designs:
 - $50 \times 50 \text{ um}^2 \text{ and } 25 \times 100 \text{ um}^2 \text{ pixels}$
 - Poly-silicon as bias resistor ($R_{bias} \sim 4.6 M\Omega$)
 - DC- or AC-coupled sensors (C_{AC} ~560 fF)

10⁰ Leakage current / μ A/cm² 10⁻¹ Singles Doubles Quads 50x50 DC 50x50 AC 10-3 -- 25x100 DC 50 100 150 200 Ω Voltage / V

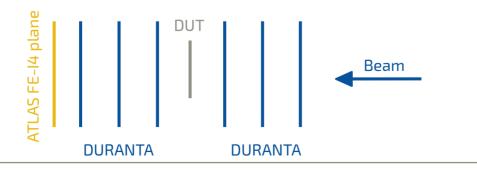
IV-curves of unirradiated sensors from one wafer

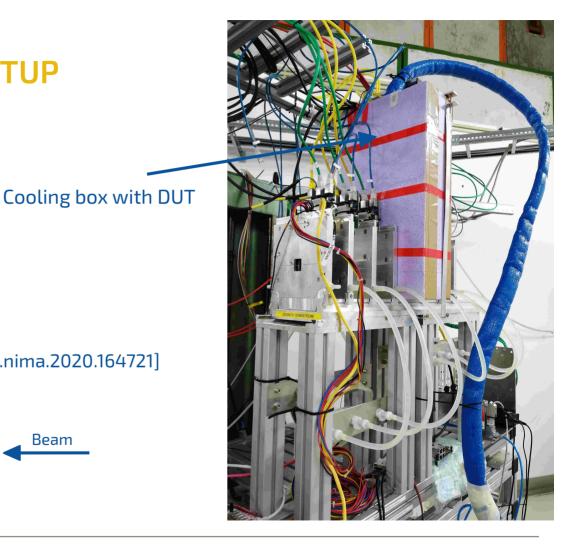

- IV-curve measurement on wafer level using probe station
- Break-down voltage: ~200V
- No systematic differences between various sensor types
- A few sensors show early (random) current increase
 - \rightarrow Backside of sensors is very sensitive
 - \rightarrow Careful handling to avoid scratches at backside


FULL-SIZE ASSEMBLIES

- Assemblies irradiated at Bonn Cyclotron
- Still functional after irradiation
- Noise ~ 25 % higher compared to small prototype
 - Likely due to additional (parasitic) capacitance of bias resistor
 - Capacitance measurement with PixCap65 will be performed soon

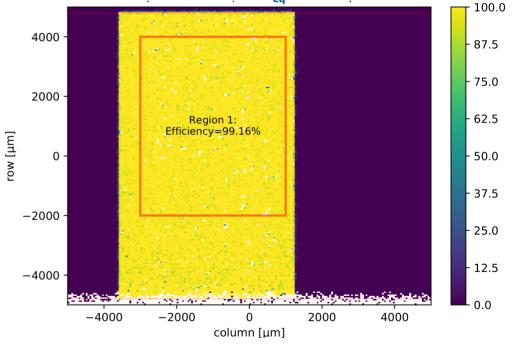
Noise measurements done with LIN-FE	Device	Noise / e	
		before irrad.	after irrad.
	Sample A, DC	94	101
	Sample B, DC	91	100
	Sample C, AC	101	102
	Sample D, AC	89	100
	prototype	73	77


IV curves of full-size assemblies



TESTBEAM SETUP

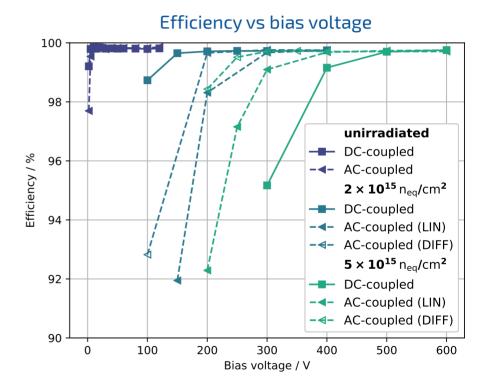
- Testbeam done at DESY
 - Perpendicular, 5 GeV electron beam
 - Trigger rate: 5 7 kHz
- DUT measured in cooling box:
 - Controllable, stable temperature (ΔT ~ 1 °C)
 - Temperature: -15 °C (NTC on R/O chip)
- DUT read out using BDAQ53 R/O system [10.1016/j.nima.2020.164721]



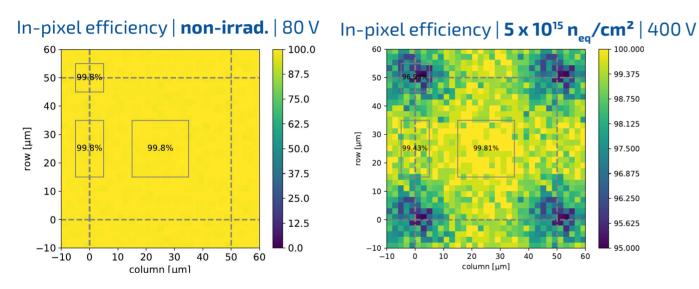
HIT-DETECTION-EFFICIENCY

- Hit-detection efficiency measured at DESY
 - 5 GeV electrons
- DUT operation conditions:
 - Threshold: ~1300 e, noise occupancy: < 10⁻⁶

- After irradiation to $5 \times 10^{15} n_{eq}^{2}$ / cm²:
 - 99 % efficiency @ 400 V

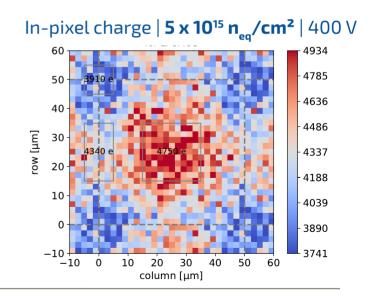

Efficiency map $| 5 \times 10^{15} n_{eo}^2 / 400 \text{ V} | \text{DC-sensor}$

White pixels diabled during data taking (noisy or stuck)

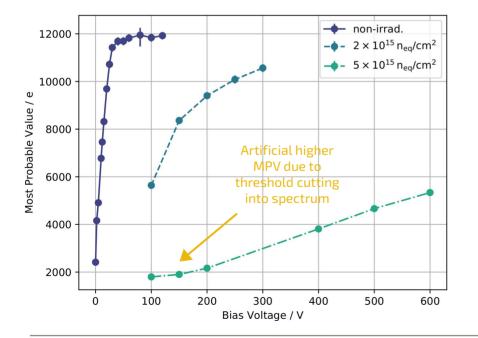


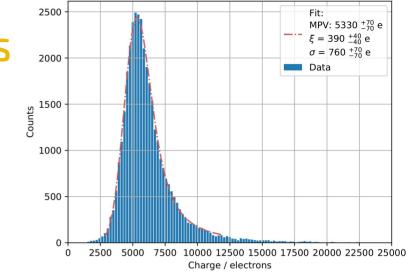
HIT-DETECTION-EFFICIENCY

- Before irradiation:
 - Fully efficient at very low bias voltage (~ 5V)
 - At 80V: 99.8 % efficiency
- After irradiation:
 - > 97 % efficiency reached for all modules
- Differences between LIN-FE and DIFF-FE due to different thresholds
 - LIN: ~ 1300 e
 - DIFF: ~ 900 e



\rightarrow efficiency loss happens mainly in pixel corners


 \rightarrow can be explained with lower charge in pixel corners due to low electric field and charge sharing

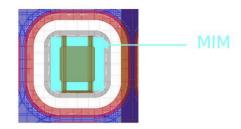


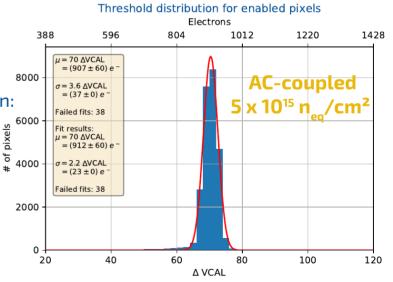
CHARGE MEASUREMENTS

- Charge measured using high precision TDC-method
- After $5 \times 10^{15} n_{eq}/cm^2$: 5300e charge signal @ 600 V

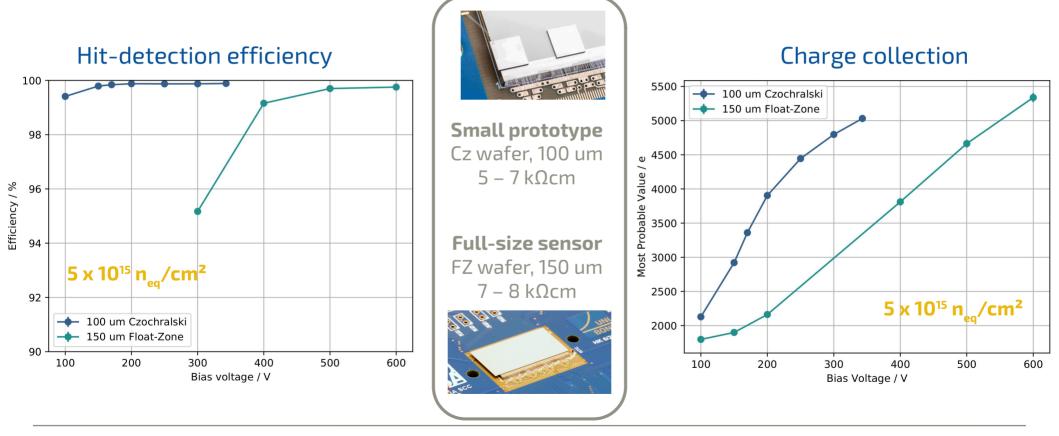
Charge spectrum | 5 x 10¹⁵ n_{er}/cm² | 600 V | DC-sensor

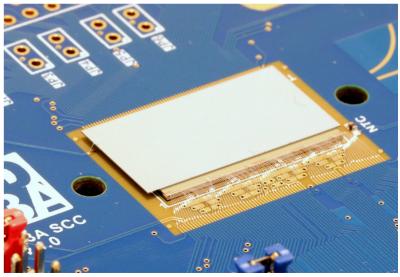
- Before irradiation (using 75 e/h per um):
 - Extracted resistivity: ~8 kΩcm
- Charge collection efficiency after irradiation:
 - 2 x 10¹⁵ n_{eq}/cm²: ~ 85 % (10500 e) @ 300V
 - 5 x 10¹⁵ n_{eq}/cm²: ~ 45 % (5300 e) @ 600V




AC-COUPLED VS DC-COUPLED

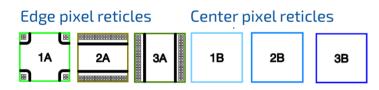
- AC-coupling through MIM-capacitor (~560 fF)
- Advantage that leakage current does not flow into analogue FE pixels:
 - → no leakage current compensation needed
- AC-coupling seems benefitial after irradiation for DIFF-FE
- Charge collection behaviour still under investigation since CCE is unknown (CCE < 1 for AC-coupling → capacitative charge sharing)


Device	Threshold / e
DC, DIFF-FE, non-irrad.	900
AC, DIFF-FE, 5 x 10 ¹⁵ n _{eq} /cm ²	900
DC, DIFF-FE, 2 x 10 ¹⁵ n _{eq} /cm ²	1400

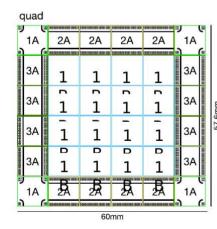

COMPARISON TO SMALL PROTOTYPE SENSOR

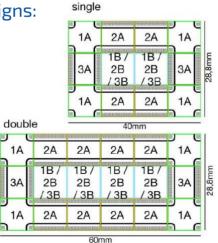
CONCLUSION

- Succesfull fabrication of full-size passive CMOS sensors in 150 nm LFoundry technology
 - Breakdown @ ~200V
 - Backside is very sensitive and some sensors show earlier breakdown from scratches due to improper handling
- Sensors can withstand fluences up to $5 \times 10^{15} n_{eo}^{2}/cm^{2}$
 - After irradiation sensors can be operated up to voltages of 600V
 - Hit-detection is well above 97 %: @ >400V hit-detection efficiency of > 99 % achieved
 - Collected charge at 600V: ~ 5300 e (5 x 10¹⁵ n_{eq}/cm²)
- AC-coupling seems benefitial after irradiation for DIFF-FE:
 - Maintain low threshold

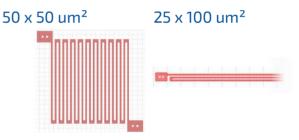


BACKUP

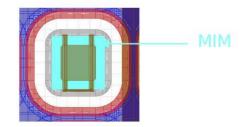



STITCHING AND BIASING

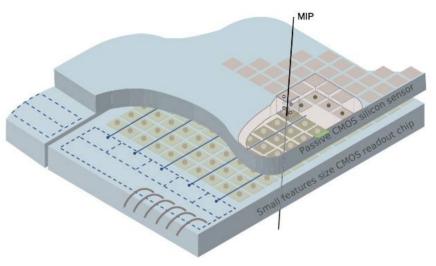
- Sensor size > reticle size \rightarrow reticle stitching required
- Different reticles:



• Repeated for different designs:

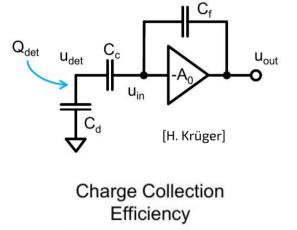


- Resistor biasing for every pixel flavors, likely benefitial to prevent cross-talk
- Bias resistor: ~ $4.6 M\Omega$

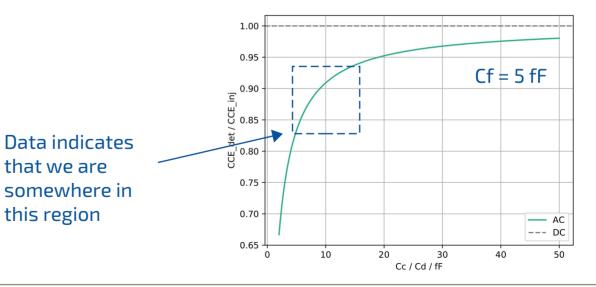

• MIM capacitators for AC-coupling: 560 fF

WHY CMOS PROCESS?

- Hybrid pixel detectors: Sensor + R/O chip
- Use commercial high-voltage/high-resistive CMOS processes for planar sensor production:
 - Large wafers (200 mm)
 - High production through-put, low costs
 - Poly-silicon resistors \rightarrow connection to bias grid
 - MIM-capacitors for AC coupling → no leakage current into R/O pixels
 - Metal layers for redistribution → no enlarged inter-gap pixels
- No active components → **passive CMOS sensors**


[Pohl, David-Leon: 3D-Silicon and Passive CMOS Sensors for Pixel Detectors in High Radiation Environments]

LFoundry 150 nm 1.8V CMOS process
MIM capacitor: 1 fF/um², 2 fF/um²
Poly-silicon resistor: ~ 2.2 kOhm/cm
4 -6 metal option, thick metal
Back-side processing: thinning and implantation
Lithographic stitching


CCE OF AC-COUPLED DEVICES

Charge collection from **detector node**

 $\frac{1}{\frac{1}{A_0(\frac{C_d}{C_f} + \frac{C_d}{C_c}) + \frac{C_d}{C_c} + \frac{1}{A_0} + 1}}$

- Charge transfer function of an AC-coupled device is different for detector charge and injection charge (1 > CCE_{inj} >= CCE_{det})
- Important for calibration is the ratio of the two CCEs

