# TPA - TCT <br> Two Photon Absorption Transient Current Technique 

Moritz Wiehe ${ }^{1,2}$, Marcos Fernandez Garcia ${ }^{1,5}$, Michael Moll ${ }^{1}$, Sebastian Pape ${ }^{1,6}$

Raúl Montero Santos ${ }^{3}$, Rogelio Palomo Pinto ${ }^{4}$, Ivan Vila Alvarez ${ }^{5}$
${ }^{1}$ CERN
${ }^{2}$ Universität Freiburg
${ }^{3}$ Universidad del Pais Vasco (UPV-EHU)
${ }^{4}$ Universidad de Sevilla (US)
${ }^{5}$ Instituto de Física de Cantabria (CSIC-UC)
${ }^{6}$ Universität Dortmund

technische universität
dortmund


SPONSORED BYTHE

## Outline

- Intro to TPA-TCT
- Setup
- Power + TPA reference
- Spatial resolution
- Tilt correction


## Transient Current Technique

TCT: red laser (650nm = 1.9 eV )

- short penetration depth: carriers deposited in a few $\mu \mathrm{m}$ from surface
- front and back TCT: study electron and hole drift
- 2D spatial resolution ( $5-10 \mu \mathrm{~m}$ )


TPA-TCT: SWIR laser (1550nm = 0.8 eV )

- No single photon absorption in silicon
- 2 photons produce one electron-hole pair
- Point-like energy deposition in focal point
- 3D spatial resolution ( $1 \times 1 \times 10 \mathrm{~mm}^{3}$ )


TPA @ UPV/EHU Bilbao
[M. Fernández García, 10.1016/.nima.2016.05.070] [M. Fernández García et al 2017 JINST 12 C01038]


TPA @ CERN
[M. Wiehe, 10.1109/TNS.2020.3044489]
see also: TPA @ ELI
[G.Medin, 36/37thRD50 WS, 2020]

TCT: NIR laser (1064nm = 1.17 eV )

- edge-TCT invented within RD50: 2010
- long penetration depth
- similar to MIPs (though different $\mathrm{dE} / \mathrm{dx}$ )
- top and edge-TCT
- 2D spatial resolution ( $5-10 \mu \mathrm{~m}$ )


Commercialization (2020)


- LPS: Laser Pulse Source
- All-fiber CPA fs pulses generation
- Pulse rep. single shot to 8 MHz
- LPM: Laser Pulse Management
- Pulse energy: <10 pJ to > 10 nJ
- Synchronized shutter. rise/fall time < 1 us
- D-SCAN: Dispersion scanning
- Pulse duration: 200 fs to 500 fs
- Spectral and temporal pulse characterization


## Two Photon Absorption - TCT



## Two Photon Absorption <br> Absorption only at focal point

Confine photons in time (femto-second laser) and in space (microfocusing) for Two Photon Absorption


Requirements for TPA-TCT:

- Sub band-gap energy laser $\lambda>1100 \mathrm{~nm}$ ( $\mathrm{E}<1.12 \mathrm{eV}$ )
- large enough intensity


$$
\frac{d N(r, z)}{d t}=\frac{\alpha I(r, z)}{\hbar \omega}+\frac{\beta_{2} I^{2}(r, z)}{2 \hbar \omega}
$$

Carrier Generation equation

## Gaussian Laser Beam

Irradiance $[\mathbf{l ( r , z , t})]=\mathbf{J} / \mathbf{m}^{2} \mathbf{S} \quad I(r, z, t)=\left\lvert\, \frac{E_{p}}{\tau} \frac{4 \sqrt{\ln 2}}{\pi^{\frac{3}{2}} w^{2}(z)} \exp \left[-\frac{2 r^{2}}{w^{2}(z)}\right] \exp \left[-4 \ln 2 \frac{t^{2}}{\tau^{2}}\right]\right.$

Normalization of $\mathrm{I}(\mathrm{r}, \mathrm{z}, \mathrm{t})$ is such that $E_{p}=\int_{-\infty}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\infty} I(r, z, t) r d r d \phi d t$

Ep: Pulse Energy

## Gaussian spatial term

Beam radius $w \quad w(z)=w_{0} \sqrt{1+\left(\frac{\lambda z}{\pi w_{0}^{2} n}\right)^{2}}$
Rayleigh length zo

$$
z_{0}=\pi w_{0}^{2} n / \lambda
$$

w is the $2 \sigma$ radius of the intensity profile and $w\left(z_{0}\right)=\sqrt{2} w_{0}$

Gaussian temporal term
$\tau=\mathrm{FWHM}$ pulse temporal width


Numerical aperture defined by beam divergence

$$
N A=n \sin \theta
$$

beam radius $w$ increases linearly at large $z$

$$
\tan \theta=\lim _{z \rightarrow \infty} \frac{d w(z)}{d z}=\frac{w_{0}}{z_{0}}
$$

## Two Photon Absorption

Change of irradiance along beam direction due to absorption (SPA, TPA, free carrier absorption)

(for unirradiated sensor)
creation of charge carriers:

$$
\frac{d n(r, z)}{d t}=\frac{\beta_{2}}{2 \hbar \omega} I^{2}(r, z, t)
$$

inserting irradiance (Gaussian beam), integration over time
$\rightarrow$ charge carrier density:

$$
n_{t p a}(r, z)=\frac{E_{p}^{2} \beta_{2} 4 \ln 2}{\tau \hbar \omega \pi^{\frac{5}{2}} w^{4}(z) \sqrt{\ln 4}} \exp \left[-\frac{4 r^{2}}{w^{2}(z)}\right]
$$

spatial integration
$\rightarrow$ total number of charge carriers:

$$
N_{t p a}=\int_{V} n_{t p a}(r, z) d V=\frac{E_{p}^{2} n \beta_{2} \sqrt{\ln 4}}{4 \hbar c \tau \sqrt{\pi}}
$$

$\begin{aligned} & \text { depletion of the beam: } \\ & \text { absorbed photons } \ll \text { total flux } \\ & \text { beam depletion is neglected }\end{aligned} \quad I(z)=\frac{I_{0}}{1+\beta_{2} I_{0} z}$ depletion of the beam:
absorbed photons $\ll$ total flux $\quad I(z)=\frac{I_{0}}{1+\beta_{2} I_{0} z}$
beam depletion is neglected


Charge carrier density in silicon $\beta 2=1.5 \mathrm{~cm} / \mathrm{GW}$

## Pulse width

$$
\frac{d I(r, z, t)}{d z}=-\alpha I(r, z, t)-\beta_{2} I^{2}(r, z, t)-\sigma_{e x} N I(r, z, t)
$$

$\alpha=0$ only for non-irradiated silicon


$$
n_{\text {tpa }}(r, z)=\frac{E_{p}^{2} \beta_{2} 4 \ln 2}{\tau+\pi \pi^{\frac{5}{2}} w^{4}(z) \sqrt{\ln 4}} \exp \left[-\frac{4 r^{2}}{w^{2}(z)}\right]
$$

$\substack{\text { Irradiation: } \\ \boldsymbol{\alpha} \neq \mathbf{0} \rightarrow \mathbf{S P A}}$
$\frac{n_{\text {tpa }}}{n_{\text {spa }}} \propto \frac{1}{\tau} \quad$ FWHM of intensity vs. time profile

- Best signal resolution for short pulses.

- Lower limit given by dispersion: 60fs


$$
\tau_{\text {out }}=\tau_{\text {in }} \sqrt{1+\frac{16(\ln 2)^{2} G D D^{2}}{\tau_{\text {in }}^{4}}}
$$

## TPA-TCT at CERN

2016: Presentation of TPA-TCT at CERN to CERN KT Fund Selection Committee $\rightarrow$ Funding to build a compact TPA-TCT setup at CERN SSD lab
$2^{\text {nd }}$ of July 2019: First TPA-TCT signal at CERN

M. Wiehe, "Development of a Tabletop Setup for the Transient Current Technique Using Two-Photon Absorption in Silicon Particle Detectors,"
IEEE Transactions on Nuclear Science, vol. 68, no. 2, pp. 220-228, Feb. 2021 https://doi.org/10.1109/TNS.2020.3044489

23/06/2021
Moritz Wiehe - TPA-TCT - 38th RD50 WS


Measure:

## signal / noise

charge collection time
charge collection homogeneity
electric field profile
effective doping concentration


8

## Pulse Management

- Acousto-optic-modulator for selecting the pulse frequency: 8.1 MHz to single shot
- NDF: Motorized ND-filter, variable pulse energy 0-10nJ (at laser output)
- Electrical trigger: InGaAs detector used for triggering (before power adjustment)
- SPA reference: InGaAs detector for power monitoring





## TPA-TCT at CERN



## Power and Charge

The laser power is adjusted with a neutral density filter (NDF) inside the pulse management module.


Variable pulse energy 0-10nJ (at laser output) reduced to 1 nJ below objective
$2^{\text {nd }}$ order absorption (TPA)
$\rightarrow$ quadratic dependence of signal on laser power

$$
\frac{d N(r, z)}{d t}=\frac{\alpha I(r, z)}{\hbar \omega}+\frac{\beta_{2} I^{2}(r, z)}{2 \hbar \omega}
$$

Carrier Generation equation
(1MIP in $300 \mu \mathrm{~m} \sim 3.6 \mathrm{fC}$ )


$$
N A=0.5
$$



Measurement of the laser power below the objective (position of DUT)

- Power meter PMD100D+S401C (thermopile)
- Pulse frequency=4.051MHz
$-\mathrm{T}=23^{\circ} \mathrm{C}$

Measurement of the collected charge inside a silicon sensor (7859-WL-A63-PIN4) with a charge sensitive amplifier

- CxL0058, Diamond Spectroscopic Amplifier - Gain=12.5 mV/fC

50:50 beamsplitter for TPA reference and IR camera in place. Can be removed after alignment.

- $2 x$ energy
- $4 x$ charge
- no TPA ref, no IR camera

Reflection not taken into account: $30 \%$ light reflected on silicon surface

## Power correction

A reference signal is used to correct the DUT-signal for fluctuations in the laser power

First tests with an SPA reference failed:

- Fluctuations in laser power (affect SPA + TPA)
- Fluctuations in pulse temporal profile (affect only TPA)
$\rightarrow$ Reference the DUT against a TPA-signal to correct for instabilities

Work in progress: Increase reference amplitude to increase SNR


SPA reference


TPA reference



## Second Harmonic Generation



White mark on the crystal housing is perpendicular to the crystal (extraordinary) axis.
$\rightarrow$ needs to be parallel to polarization of incident beam
Crystal is cut with $\theta=20^{\circ}$ angle, so that beam enters with normal incidence.

SHG was tested as a method to obtain a reference signal.
Discarded because..

- the signal amplitude is very low
- very sensitive to alignment
- sensitive to temperature changes
- but: could in principle be set up without sacrificing a part of the beam


## Knife-edge scan




For every z , an $\operatorname{erf}()$ is fitted to $\mathrm{Q}(\mathrm{x})$ to obtain the beam radius $\mathrm{w}(\mathrm{z})$. $\mathrm{w}(\mathrm{z})$ can be fitted to obtain the waist radius w 0 and Rayleigh-length zO .

Z-values need to be corrected/scaled due to the effect of refraction:

Shape of the focal point in silicon
Rayleigh length $z_{0}=12.5 \mu \mathrm{~m}$
$2 \sigma$ radius at the beam waist $\mathrm{w}_{0}=1.4 \mu \mathrm{~m}$

$$
z^{\prime}=z \cdot \sqrt{\frac{z_{0} \pi n^{3}}{z_{0} \pi n-\lambda n^{2}+\lambda}}
$$

More results (NA=0.7) in the next talk Sebastian Pape - TPA-TCT: Results


## Resolution along beam direction

SPA: Light absorption anywhere along beam

TPA: No signal, if focal point not inside detector


Note: Measurements for a given ( $x, y$ )-position on the sensor



More results in the next talk
Sebastian Pape - TPA-TCT: Results

## Hexapod: Tilt correction

- Drift velocity dependence on $x, y$ position measured $\rightarrow$ sensor is tilted
- Four z-scans at different positions $\rightarrow$ obtain sensor surface at rising edge of $Q(z)$
- Plot sensor surface, z against x,y
- Fit to obtain angles wrt. coordinate axes

Fit plane to surface: $z=z_{0}+a_{x} x+a_{y} y$
angles in $\mathrm{xz}-(\mathrm{yz})$-plane of $\mathrm{x}-(\mathrm{y}-)$ axis to sensor

$$
\alpha=\arctan \left(a_{x}\right) \text { and } \beta=\arctan \left(a_{y}\right)
$$

- Move hexapod carriage by angles

$$
u=-\beta \text { and } v=\alpha
$$


angle to $x$ axis $\alpha=-0.1745^{\circ}$ angle to $y$ axis $\beta=1.1278^{\circ}$




Note: An angle of $0.1^{\circ}$ over 3 mm corresponds to $5 \mu \mathrm{~m}$ height difference.

## Rotation of the coordinate system

The hexapod has a limited angular range of several degree..
To be able to scan along certain axes, if the DUT is not mounted parallel to the coordinate axes, the work coordinate system can be redefined:

Here a redefinition of the work system of $w=-20^{\circ}$ was applied.
This is not a physical rotation of the stage.
The negative angle rotates the coordinate system clock-wise.



## Conclusions

The method of TPA-TCT was tested at UPV/EHU and presented to RD50 in 2015.
A compact TPA-TCT setup was developed at CERN.

- Variable pulse energy $0-10 \mathrm{~nJ}$ at the laser output, $0-1 \mathrm{~nJ}$ at the DUT Charge generation $0-200 f C$ with $N A=0.5$
- 3D resolution with $N A=0.5: ~ z 0=12.5 \mu \mathrm{~m}, \mathrm{w} 0=1.4 \mu \mathrm{~m}$ NA $=0.7$ : $z 0=6 \mu \mathrm{~m}, \mathrm{w} 0=0.9 \mu \mathrm{~m}$ (see next talk)
- Correction of power/spectral fluctuations by a TPA or SHG reference is crucial.
- Precise positioning of the sample and correction of angular misalignment $\left(\mathrm{O} \sim 0.1^{\circ}\right)$ is important.


## Temperature dependence of collected charge in TPA-TCT

Higher absorption at higher temperatures expected:

- The band gap decreases with higher temperature
- Band-to-band absorption in Si is indirect (phonon assisted)
- Measurement of the charge at different temperatures $\left[-20^{\circ} \mathrm{C} ;+20^{\circ} \mathrm{C}\right]$ with different laser powers (NDF angles)
- Sensor: 7859-WL-A63-PIN4, 100V, Charge sensitive amplifier CxL0058, tilt corrected, not irradiated, physically $\sim 285 \mu \mathrm{~m}$ thick, no support wafer
- Laser freq: 200 Hz


Fit with linear function, $[\mathrm{p} 0]=\mathrm{fC},[\mathrm{p} 1]=\mathrm{fC} /{ }^{\circ} \mathrm{C}$
Normalize slope by charge at $0^{\circ}$ ( $\sim$ mean, result depends slightly on temperature: $0.0067\left(-20^{\circ} \mathrm{C}\right)$ to $\left.0.0053\left(+20^{\circ} \mathrm{C}\right)\right)$ Normalized Temp.C. $=\mathrm{p} 1 / \mathrm{p0} 0,\left[1 /{ }^{\circ} \mathrm{C}\right]$

- Weighted average: Normalized Temp.C. $=(0.0059+/-0.0004) 1 /{ }^{\circ} \mathrm{C}$
- E.g.: at $100 f \mathrm{C}$ a temperature change of $40^{\circ} \mathrm{C}$ leads to a difference of $0.0059^{\circ} \mathrm{C}^{-1} \times 100 \mathrm{fC} \times 40^{\circ} \mathrm{C}=24 \mathrm{fC}$




## Inter-pad region: HPK2-LGAD



> HPK2-W28-S1-LGAD-P14 LG 5x5-SE3-IP5-UBM

https://doi.org/10.1016/j.nima.2020.164494


Images with Hirox microscope CERN EP-DT QART lab
laser beam spot


## HV-CMOS



Finding the device and the active volume under the objective is challenging.

The active volume has a size of approx. $120 \times 25 \mu \mathrm{~m}$ and is buried $50 \mu \mathrm{~m}$ deep under the surface (in the direction of the beam).

https://doi.org/10.1016/j.nima.2016.06.001

## HV-CMOS

Three signal regions are identified.
Implant, low amplitude, slower signals
Drift region, high amplitude, fast signals
Diffusion region, very long signals, charge carriers diffuse into depleted region
charge integration time 25 ns
drift velocity integrated 600ps
same distribution for lower integration times (100-600ps)



DNW can not be identified in collected charge.
Focal point is $\sim 50 \mu \mathrm{~m}$ below the surface.
Gradient of collected charge (and drift velocity) likely due to clipped beam



Moritz Wiehe - TPA-TCT - 38th RD50 WS

## Strip Detector

Micron strip detector: FZP2328-11

- p-type, $80 \mu \mathrm{~m}$ pitch, $30 \mu \mathrm{~m}$ strip metalization width
- $300 \mu \mathrm{~m}$ thickness
- non-irradiated
- Central strip bonded, 2 neighbors bonded
- backside bias

back illumination



## Strip Detector

reflection on metalization increases irradiance and Q $1^{2}$


## Strip Detector





## Reflections on Si-Air interface

Fresnel equation for normal incidence

$$
R_{0}=\left|\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right|^{2} \quad \begin{aligned}
& \sim 30 \% \text { for } \mathrm{Si}-\text { air } \\
& \rightarrow 10 \% \text { of charge expected }\left(\mathrm{Q} \sim \mathrm{I}^{2}\right)
\end{aligned}
$$

Light is reflected on the backside of the detector, leading to a mirror image. Symmetry can be observed e.g. in charge / drift velocity / signal shape.

7859-WL-A63-PIN4 Not irradiated Physically $\sim 285 \mu \mathrm{~m}$ thick No support wafer

Reflection depends on backside processing:

- No reflection for deep diffused with support wafer
- Mirror-image with $\sim 10 \%$ amplitude on Si - air interface
- Strong reflection with pronounced peak at metal layer (strip or back side metalization)



## Irradiated Detectors



Front Back


$$
\frac{d N(r, z)}{d t}=\frac{\alpha I(r, z)}{\hbar \omega}+\frac{\beta_{2} I^{2}(r, z)}{2 \hbar \omega}
$$

Carrier Generation equation

- Irradiated with $1.6 \mathrm{e} 16 \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$ (neutrons, Ljubljana)
20 V , no cooling, $\mathrm{I}=0.23 \mathrm{~mA}$
- Main junction has shifted to backside after irradiation
- Not SPA corrected

Irradiation introduces defects in band gap
$\rightarrow$ single photon absorption possible
$\rightarrow$ TPA measurements need to be corrected

## e-h Plasma

- High charge carrier densities form an e-h plasma.
- Charge carriers are shielded from external electric field
- Drift of charge carriers is delayed
- Pulses appear elongated
- Onset of plasma observed $\sim 0.3 \mathrm{~nJ} / 100^{\circ} \mathrm{NDF}$




Current sensitive amplifier, BS on, $7859-W L-A 63-P I N 4$ at $100 \mathrm{~V}, 20^{\circ} \mathrm{C}$

## Nonlinear Optics

$\tilde{\mathbf{D}}=\epsilon_{0} \tilde{\mathbf{E}}+\tilde{\mathbf{P}}$

$$
\tilde{P}(t)=\epsilon_{0}\left[\chi^{(1)} \tilde{E}(t)+\chi^{(2)} \tilde{E}^{2}(t)+\chi^{(3)} \tilde{E}^{3}(t)+\cdots\right]
$$

## linear interactions

## second order nonlinear interactions:

- second harmonic generation (SHG)
- difference- / sum-frequency generation
only for non-centrosymmetric media



## third order nonlinear interactions:

- four wave mixing, THG
- optical Kerr effect, TPA $\quad n=n_{0}+n_{2} I$
lowest order nonlinear interaction for centrosymmetric media (like liquids, gases, amorphous solids, silicon..)


Nonlinear optics $\left(3^{\text {rd }}\right)$, Robert W.Boyd

## Phase matching

Consider the phase of an electromagnetic wave $\boldsymbol{\omega t - k r}$

Sum frequency generation in general:

$\omega 1+\omega 2=\omega 3$ $k 1+k 2=k 3$

Second harmonic generation with collinear beams:


Incident wave and second harmonic need to see the same refractive index:
$n(\omega)=n(2 \omega)$
But: Large $\omega \rightarrow$ large n (normal dispersion)
BBO is a material with negative birefringence $\left(n_{e}<n_{0}\right)$
$\rightarrow$ Align polarization of $\omega$ perpendicular to optical axis
$\rightarrow$ tune $\mathrm{n}_{\mathrm{e}}$ by turning crystal



## Dispersion of Short Pulses

The phase of a pulse is modified when propagating through a medium

$$
k(\omega)=k\left(\omega_{0}\right)+k^{\prime} \cdot\left(\omega-\omega_{0}\right)+\frac{1}{2} k^{\prime \prime} \cdot\left(\omega-\omega_{0}\right)^{2}+\ldots \quad \begin{gathered}
E_{\text {out }}(\omega)
\end{gathered}=E_{\text {in }}(\omega) \cdot e^{-i(k(\omega) \cdot x)}
$$

Constant term: All spectral components are shifted by the same amount $\rightarrow$ no change of pulse width

Linear Term: Temporal phase still constant $\rightarrow$ pulse is delayed, no change of pulse width

Non-Linear Term: Non-linear temporal phase Pulse is stretched: 'chirped pulse'

## Dispersion of Short Pulses

## GDD: Group Delay Dispersion

Severe for (ultra) short pulses due to large spectral bandwidth!

(Chirped pulse)
$\Delta t \cdot \Delta v>0.44$
$G V D=\frac{\lambda^{3}}{2 \pi c^{2}}\left(\frac{\partial^{2} n}{\partial \lambda^{2}}\right) \rightarrow G D D=L \cdot G V D$
Material thickness L

$$
\Delta t_{\text {out }}=\frac{\sqrt{\Delta t^{4}+16(\ln 2)^{2} G D D^{2}}}{\Delta t}
$$

Pulse width of a $\lambda=800$ pulse after 20 mm BK 7 glass.

## Z-scan..

This sensor is $\mathbf{\sim} \mathbf{2 0 0 \mu m}$ thick


movement of positioning stage $\neq$ movement of focal point

## Z-scaling

I. Refraction: Beam appears elongated in silicon
$\rightarrow$ Rayleigh length z0 is different in si/air
'Scaling' of z depends on focusing optics: NA or zO (here $z 0$ is the value in silicon!)

$$
\begin{aligned}
& z^{\prime}=z \cdot \sqrt{\frac{z_{0} \pi n^{3}}{z_{0} \pi n-\lambda n^{2}+\lambda}} \quad \text { derived from } \quad \text { alternative using NA }=\mathrm{n} \sin \theta \\
& \sin \theta=n \sin \theta^{\prime} \\
& \tan \theta^{\prime}=w_{0} / z_{0} \\
& z_{0}=\pi n w_{0}^{2} / \lambda
\end{aligned} \quad z^{\prime}=z \sqrt{\frac{n^{2}-N A^{2}}{1-N A^{2}}}
$$


II. Stage movement by $\Delta z$
$\rightarrow$ focal point movement $\Delta F$
focal point to sensor surface changes by $\Delta z^{\prime}=\Delta z+\Delta F$
same scaling applies for $\Delta z$ to $\Delta z^{\prime}$ as for $z$ to $z^{\prime}$


## Z-scan



Technicality:
Horizontal axis not scaled to include z0 into fit

$$
\begin{aligned}
& \frac{\text { Result }}{\mathrm{d}=207 \mu \mathrm{~m}} \\
& \mathrm{zO}=15.7 \mu \mathrm{~m} \rightarrow \mathrm{w} 0=1.5 \mu \mathrm{~m} \\
& N A=n \sin \theta \approx \lambda / \pi w_{0}=0.33
\end{aligned}
$$



Fit with:

$$
\begin{aligned}
& N_{t p a}^{d}(z)=2 \pi \int_{z-d}^{z} \int_{0}^{\infty} n_{t p a}\left(r, z^{\prime}\right) r d r d z^{\prime} \\
& =\frac{E_{p}^{2} n^{2} \beta_{2} \sqrt{\ln 4}}{4 c \hbar \pi^{\frac{3}{2}} \tau} \cdot\left[\tan ^{-1}\left(\frac{(d-z)}{z_{0}}\right)+\tan ^{-1}\left(\frac{z}{z_{0}}\right)\right]
\end{aligned}
$$

- account for refraction: replace $z \rightarrow$ z'
- d [mm] is sensor thickness
- zO is the Rayleigh length in silicon

$$
z^{\prime}=z \cdot \sqrt{\frac{z_{0} \pi n^{3}}{z_{0} \pi n-\lambda n^{2}+\lambda}}
$$

```
d as expected
CV measurement: \(209 \mu \mathrm{~m}\)
```

but nominal NA $=0.5$
$\rightarrow \mathrm{w} 0=1 \mu \mathrm{~m}, \mathrm{zO}=6.9 \mu \mathrm{~m}$
$\rightarrow$ focusing not as good as it could be?

## Additional Use-case for TPA

CERN Electronic Systems for Experiments (CERN-EP-ESE)

Single Event Upset (SEU) test with TPA, performing measurements in Montpellier

Can this be done at CERN with TPA-TCT-setup?


Method:

- flip electronics chip upside-down
- image chip with IR illumination/camera - perform high spatial precision SEU test

Requirement for CERN TPA-TCT-setup: - employ IR microscopy


Montpellier Laser Scan Results X. Llopart, CERN Electronic Systems for Experiments

## IR + VIS Microscopy

circular hole in metal

planned components for IR image in red


ref. laser


BSW23 or


IR Camera Lens
Beam
(Vis)


BSX12R 90:10 BS mounted in a DFM1/M for removable optics


Objective
microscope setup mounted on optical table for educational purposes


## IR rear imaging through bulk

low magnification

high magnification

visible light microscope (device similar)


## Reminder: Silicon Particle Detectors

- Reverse biased pn-junction Space charge region in depleted bulk
- Charged particles lose energy in material by ionization, create electron-hole-pairs by exciting electrons into the conduction band
- electrons / holes drift in e-field to electrodes, drift current creates the signal (Ramo-Theorem)
+ segmentation + read-out + V-supply + cooling etc.
+ stack detectors in several layers
$\rightarrow$ Tracking of charged particles
- Radiation damage reduces sensor performance


RD50 collaboration

(@CERN: EP-DT SSD-team)
"Build silicon detector with higher radiation hardness":

- Material engineering
- Device engineering
- Characterization tools


## TCT - Transient Current Technique


$z$


Red 660nm
(ideal)

Near IR 1064nm edge-TCT


DT seminar: M. Fernández, The Transient Current Technique: Iaser characterization of silicon detectors https://indico.cern.ch/event/684193/ C. Gallrapp, The TCT+ setup - a system for TCT, eTCT and timing measurements, 1st TCT Workshop (2015)

