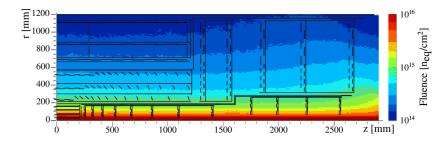


New results of edge-on measurements with electron beam on pad diodes

M. Hajheidari, E. Garutti, J. Schwandt, A.Ebrahimi, M.Antonello, G.Steinbrueck

Institute for Experimental Physics, University of Hamburg


38th RD50 Workshop

	Mohamma
RD50 workshop, 21-23 June 2021	(Univers

Introduction

After 3000 fb⁻¹

Layer	$\Phi_{eq}[10^{16} \text{ cm}^{-2}]$
1	2.3
2	0.5
3	0.2
4	0.15

- Luminosity in the CMS Phase-2 is up to 7.5×10^{34} cm⁻²s⁻¹.
- This causes a neutron equivalent fluence of $2.3 \times 10^{16} \text{cm}^{-2}$ (after 3000 fb⁻¹) in the first layer.
- The radiation damage changes the electric field and trapping times of the sensors used in the inner tracker.

The motivation of this talk

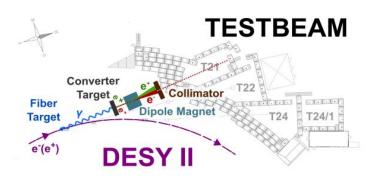
• Understanding the charge collection in highly irradiated silicon diodes

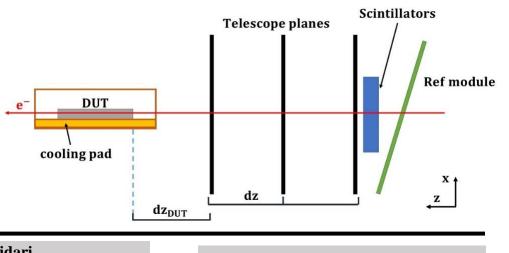
The tool of study

• Edge-on measurement using electron beam with an energy of 5.2 GeV

The performed measurements

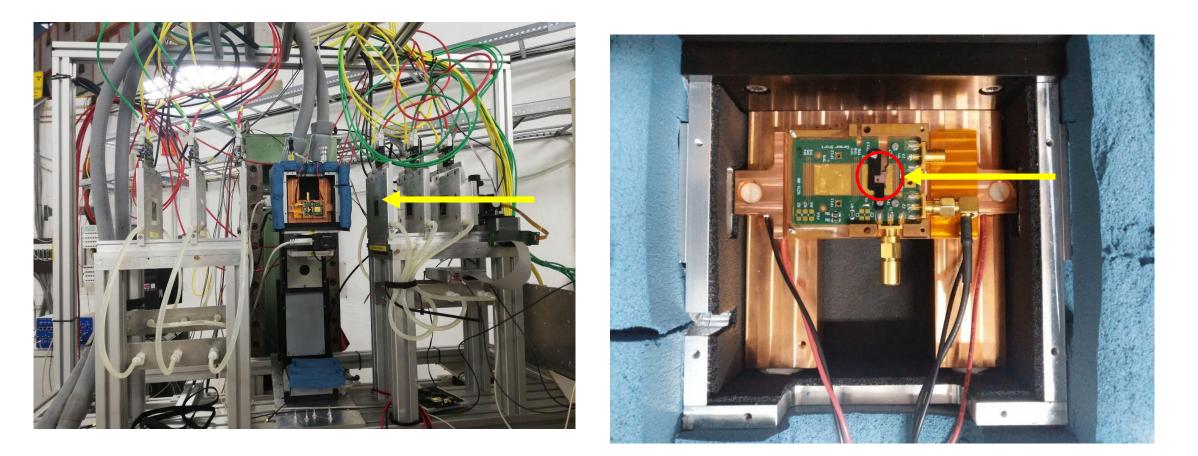
• Charge profiles of non-irradiated and irradiated diodes at different bias voltages




Measurement setup

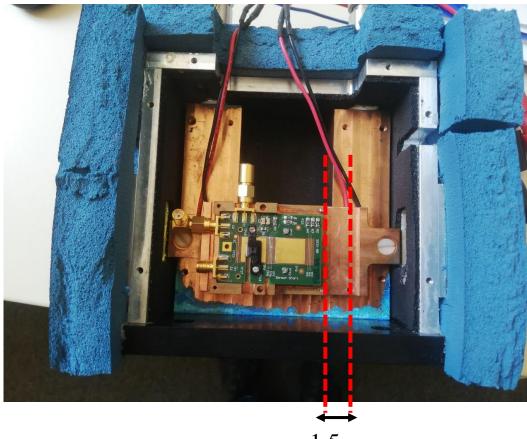
DESY II beam test facility:

- Electron/positron beam with energy of 1-6 GeV
- Beam energy of 5.2 GeV was chosen for the measurements
- Intrinsic resolution of each plane of telescope $\approx 3.2 \,\mu m$
- Timing reference module for reducing in-time pile up
- Scintillator for providing the readout trigger
- Rotation stage for the DUT with a precision of 0.10°(1.7 mrad)


Mohammadtaghi Hajheidari University of Hamburg

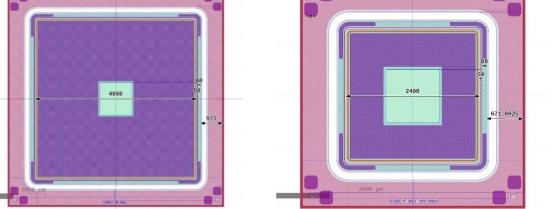
3

Measurement setup



Mohammadtaghi Hajheidari University of Hamburg

Closer DUT-to-telescope distance


Specifications of the diodes

- Active thickness 150 µm •
- Area ≈ 25 and 12.5 mm²
- p-type (n⁺pp⁺ configuration)
- Doping concentration $\approx 4.5 \times 10^{12} \text{ cm}^{-3}$ •
- Depletion voltage 75 V ٠
- Manufactured by Hamamatsu Photonic K.K (HPK) ٠
- Guard-ring is floating ٠

For irradiation study

- Irradiation with 23 MeV protons at Karlsruhe Institute of Technology (KIT) ٠
- Irradiation to equivalent fluence $\Phi_{eq} = 2$, 4, 8 and 12×10^{15} cm⁻² (hardness factor of $\kappa = 2.2$) ٠

Top view (dimensions are in micrometer)

RD50 workshop, 21-23 June 2021

Mohammadtaghi Hajheidari **University of Hamburg**

Collected charge measurement

- Transients of the diode $(u_0(t))$ are recorded
- The average of transients in the prepulse region is subtracted from the whole transient (baseline correction)
- Collected charge for the diode is calculated by

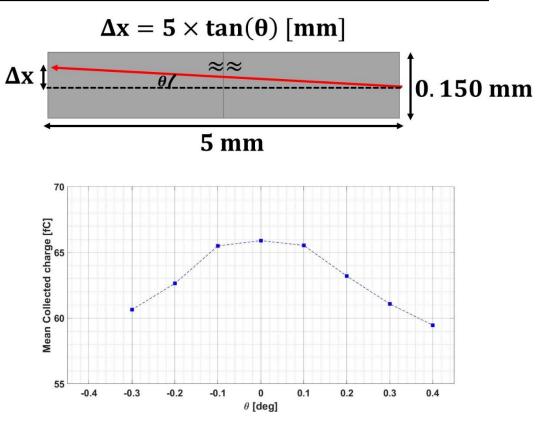
$$Q_0 = \int_{t_0}^{t_1} \frac{u_0(t)}{G \cdot R_L} dt , \qquad R_L = 50 \ \Omega , G = 100, t_1 - t_0 = 30 \ \text{ns}$$

0.01 Integration window -0.01 -0.02 ∑-0.03 (i) n-0.04 -0.05 -0.06 -0.07 -0.08 0 20 40 60 80 100 120 140 160 180 200 t [ns] $BW_{Oscilloscope} = 2.5 \text{ GHz}$ Sampling rate = $20 \frac{\text{GS}}{\text{S}}$

RD50 workshop, 21-23 June 2021

Average transient

In-situ alignment

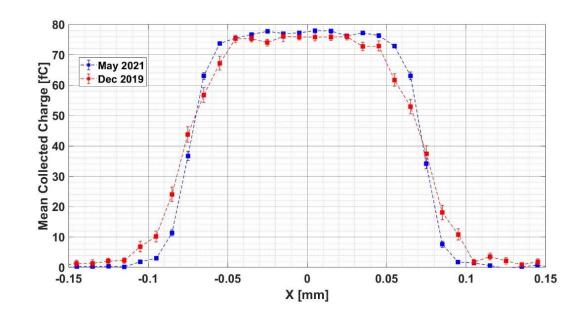


Purpose of in-situ alignment:

• Find the angle for which tracks are parallel with the diode surface, i.e. $\theta = 0$

Measurement conditions:

- Room temperature
- $V_{\text{bias}} = 120 \text{ V}$
- $E_{beam} = 4 \text{ GeV}$ (higher beam rate, faster data taking)
- Offline threshold: -20 mV
- Step of angle scan: 0.1° (1.7 mrad)


Charge profile, non-irradiated diode

Measurement conditions:

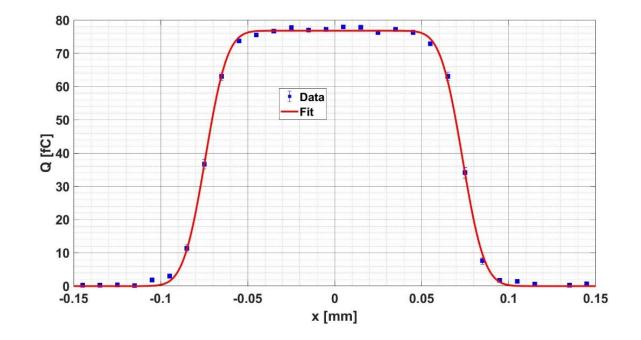
- Room temperature
- $V_{\text{bias}} = 100 \text{ V}, 120 \text{ V}$
- Diode size: 25 mm²
- $E_{beam} = 4.0 \text{ GeV}$, 5.2 GeV
- Beam divergence: $\pm 1 \text{ mrad}$
- $dz_{dut} \approx 110 \text{ mm}$, 95 mm

- A sharper profile is observed for the new measurements
- The spatial resolution has improved considerably

Charge profile, non-irradiated diode

Estimation of the diode thickness:

• Fit two error functions with the same width to the profile:


$$F(x) = A \int_{x}^{x+dx} \left(erf\left(\frac{x'-\mu_1}{\sqrt{2}\sigma}\right) - erf\left(\frac{x'-\mu_2}{\sqrt{2}\sigma}\right) \right) dx'$$

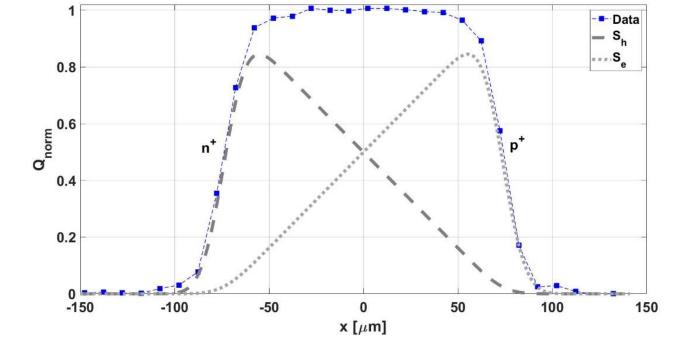
- Thickness of the diode is estimated as: $t_{diode} = \mu_2 - \mu_1$

The result of the estimation:

$$t_{diode} = 147.9 \pm 0.3 \ \mu m$$

 $\sigma=9.6\pm0.2~\mu m$

RD50 workshop, 21-23 June 2021	Mohammadtaghi Hajheidari University of Hamburg	10
---------------------------------------	---	----



Measurement conditions:

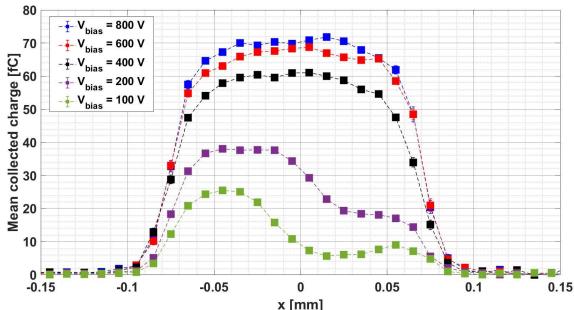
- Temperature: Room temperature
- $V_{bias} = 120 V$
- Beam divergence: ±1 mrad

The induced signal by electrons and holes

$$\begin{cases} Q_{e}(x) = \int_{-\frac{d}{2}}^{x} E_{w}(y) \cdot \exp\left(\int_{x}^{y} \frac{d\hat{y}}{\lambda_{e}(\hat{y})}\right) dy \\ Q_{h}(x) = \int_{x}^{\frac{d}{2}} E_{w}(y) \cdot \exp\left(-\int_{x}^{y} \frac{d\hat{y}}{\lambda_{h}(\hat{y})}\right) dy \end{cases}$$

- λ_e, λ_h : charge collection length of electrons and holes
- $E_w(y) = \frac{1}{d}$, weighting field of a pad diode

RD50 workshop, 21-23 June 2021	Mohammadtaghi Hajheidari University of Hamburg	11
--------------------------------	---	----


Measurement conditions:

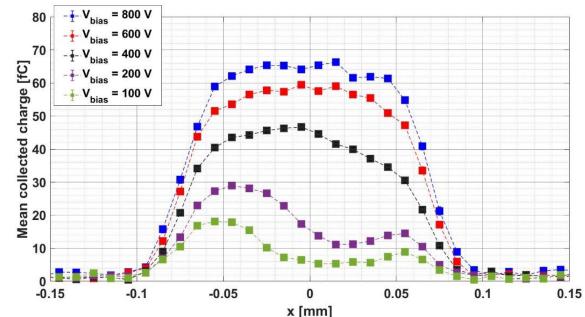
- Temperature: -20 C
- $V_{\text{bias}} = 800, 600, 400, 200, 100 \text{ V}$
- Diode size: 25 mm²
- Beam divergence: $\pm 1 \text{ mrad}$

DUT:

• Proton irradiated at $\Phi_{eq} = 2 \times 10^{15} \text{ cm}^{-2}$

- For high bias voltages (>=600V) a box shape profile is observed
- At low bias voltages, charge collection near n^+ implant is systematically higher than p^+ .

Charge profile, irradiated diode


Measurement conditions:

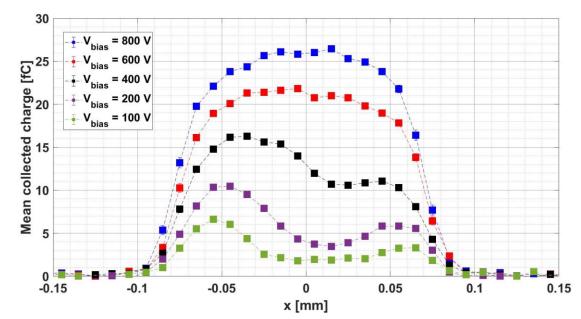
- Temperature: -20 C
- $V_{\text{bias}} = 800, 600, 400, 200, 100 \text{ V}$
- Diode size: 25 mm²
- Beam divergence: $\pm 1 \text{ mrad}$

DUT:

• Proton irradiated at $\Phi_{eq} = 4 \times 10^{15} \text{ cm}^{-2}$

- For the highest bias voltages, a box shape profile is observed
- At low bias voltages, charge collection near n^+ implant is systematically higher than p^+ .

Charge profile, irradiated diode


Measurement conditions:

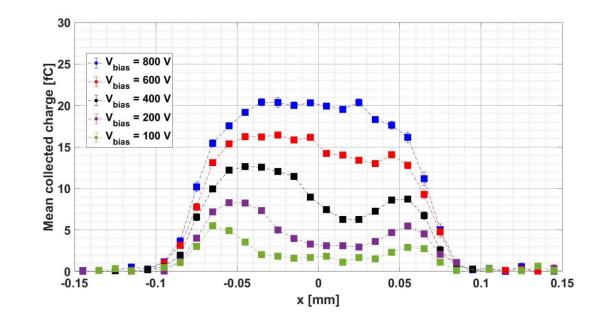
- Temperature: -20 C
- $V_{\text{bias}} = 800, 600, 400, 200, 100 \text{ V}$
- Diode size: 12.5 mm²
- Beam divergence: $\pm 1 \text{ mrad}$

DUT:

• Proton irradiated at $\Phi_{eq} = 8 \times 10^{15} \text{ cm}^{-2}$

- For the highest bias voltages, a box shape profile is observed
- At low bias voltages, charge collection near n⁺ implant is systematically higher than p⁺.

Charge profile, irradiated diode

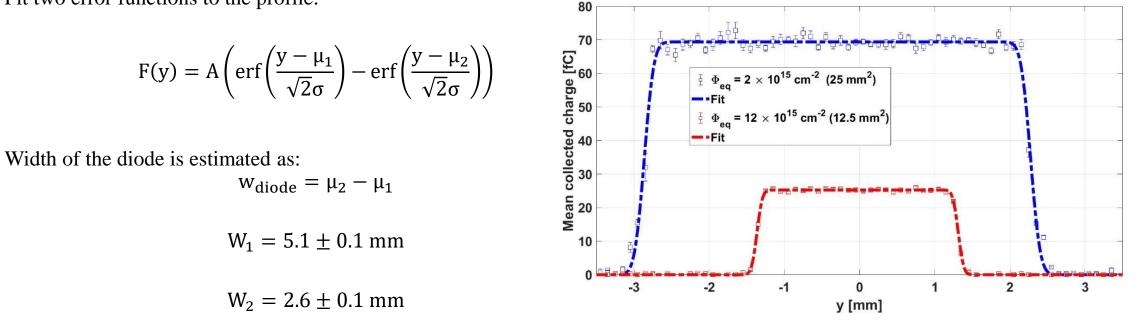

Measurement conditions:

- Temperature: -20 C
- $V_{\text{bias}} = 800, 600, 400, 200, 100 V$
- Diode size: 12.5 mm²
- Beam divergence: $\pm 1 \text{ mrad}$

DUT:

• Proton irradiated at $\Phi_{eq} = 12 \times 10^{15} \text{ cm}^{-2}$

- For the highest bias voltages, a box shape profile is observed
- At low bias voltages, charge collection near n⁺ implant is systematically higher than p⁺.

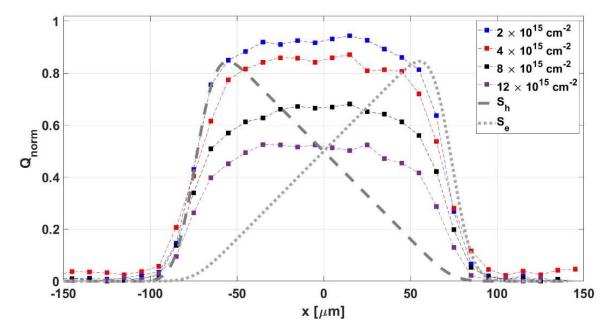


Estimation of path length for half size diode

Fit two error functions to the profile:

The charge profile of half size diodes is scaled with the following factor:

$$R = \frac{W_1}{W_2} = 1.96$$

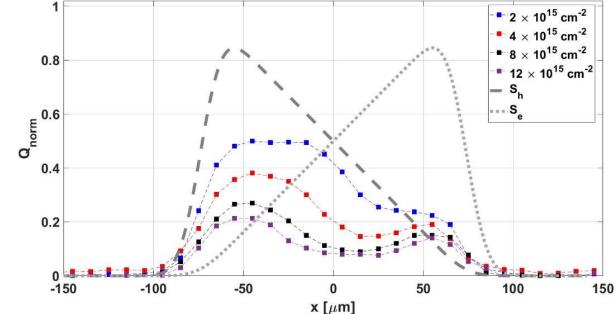

Measurement conditions:

- Temperature: -20 C
- $V_{\text{bias}} = 800 \text{ V}$
- Diode size: 25 and 12.5 mm^2
- Beam divergence: $\pm 1 \text{ mrad}$

DUT:

• Proton irradiated at $\Phi_{eq} = 2, 4, 8, 12 \times 10^{15} \text{ cm}^{-2}$

- Similar charge collection lengths for electrons and holes
- At higher fluences, contribution of holes in the signal increases


Measurement conditions:

- Temperature: -20 C
- $V_{\text{bias}} = 200 \text{ V}$
- Diode size: 25 and 12.5 mm²
- Beam divergence: ±1 mrad

DUT:

• Proton irradiated at $\Phi_{eq} = 2, 4, 8, 12 \times 10^{15} \text{ cm}^{-2}$

- Evidence of a double junction in the region close to the p^+ implant
- Holes have a higher charge collection length than electrons, main losses come from electrons
- The effect becomes pronounced with increasing irradiation fluence

Summary and outlook

Summary

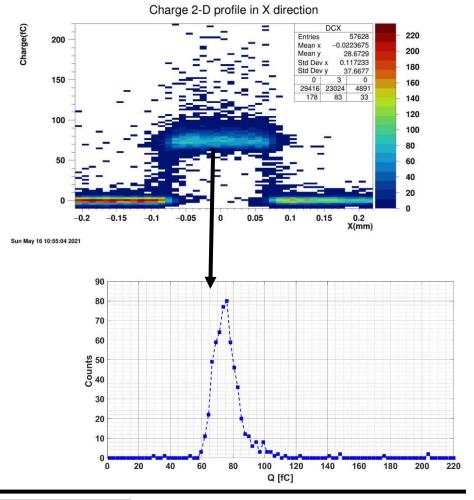
- Edge-on measurement can be used to obtain charge collection as a function of depth in irradiated pad diodes.
- The quality of measurements has improved in several aspects:
 - Finer steps for the angular scan
 - Better spatial resolution
 - Higher statistics
- Results for irradiated results reveals:
 - Holes have a higher contribution in the induced signal than electrons as irradiation fluence increases and bias voltage decreases
 - Evidence of double junction at lower bias voltages
 - Low electric field in the center of the diode
 - Position dependency of charge collection length

Outlook

- Extract the charge collection lengths of electrons and holes
- Comparison of the results with existing models and measurements

Back up Charge distribution, non-irradiated diode

Measurement conditions:

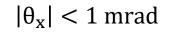

- Room temperature
- $V_{\text{bias}} = 120 \text{ V}$
- $\theta: 0^{\circ}$
- $E_{beam} = 5.2 \text{ GeV}$
- Beam divergence: ±1 mrad

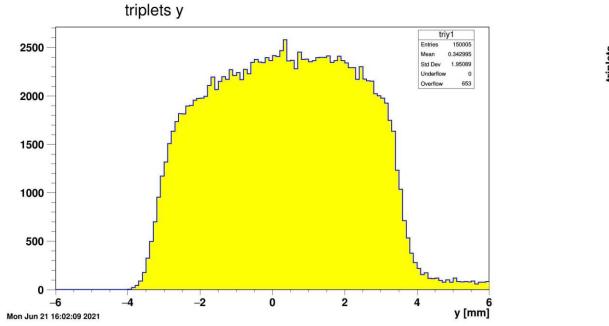
Observations:

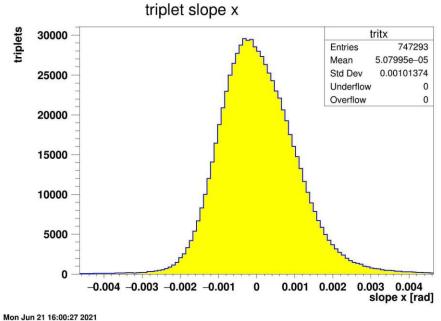
• In the central region of the diode (i.e. 0.07 mm < X < 0.07 mm)

the collected charge is well above the noise level

• Data taking without zero suppression enables us measuring very low charges (relevant for irradiated diodes)

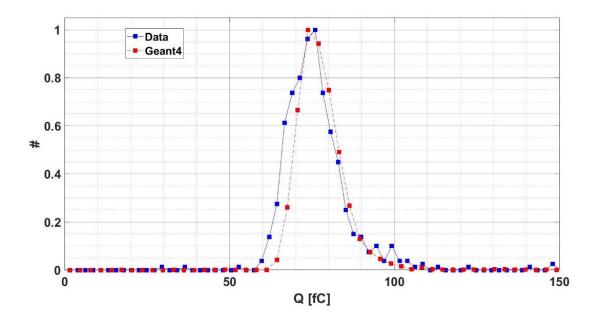

Mohammadtaghi Hajheidari University of Hamburg

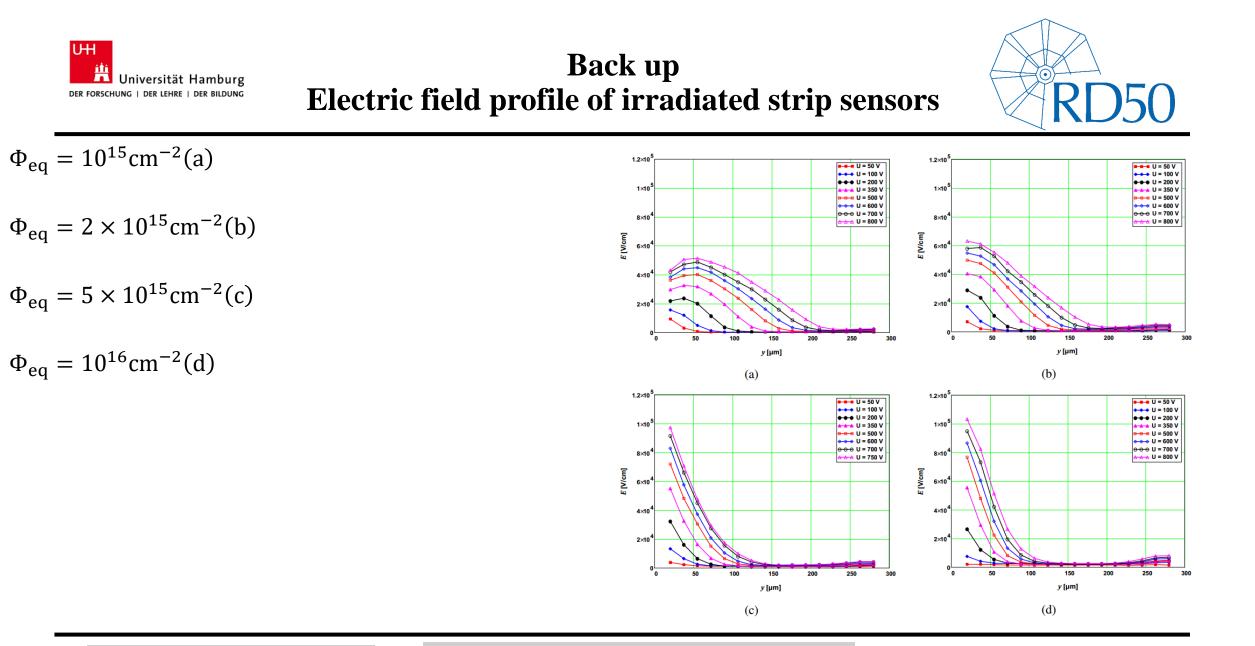



Back up Geometrical cuts

 $|y_{dut}| < 2.0 \text{ mm}$

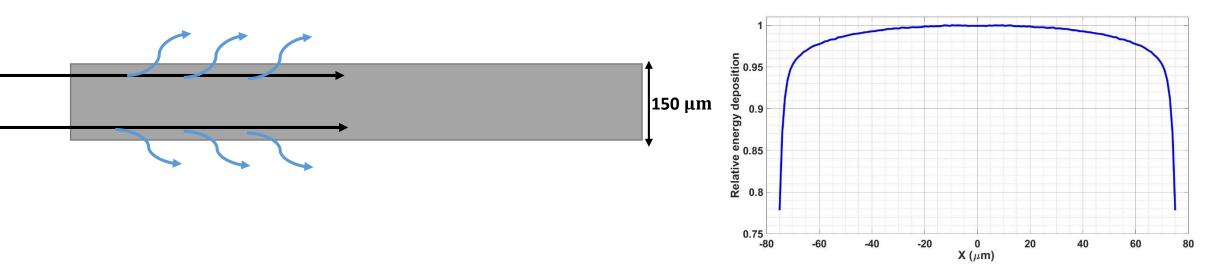
Mohammadtaghi Hajheidari University of Hamburg




Back up Charge distribution, non-irradiated diode

Measurement conditions:

- Room temperature
- $V_{\text{bias}} = 120 \text{ V}$
- $\theta: 0^{\circ}$
- $E_{beam} = 5.2 \text{ GeV}$
- Beam divergence: ±1 mrad
- Depth of tracks: 0.00 mm < X < 0.01 mm Simulation conditions:
- Energy deposition distribution for 7 mm silicon $\frac{dN}{dE}$
- Charge deposition distribution for 5 mm silicon: $\frac{dN}{dQ} = \frac{dN}{dE} \times \frac{q_0}{\epsilon} \times \frac{5 \text{ mm}}{7 \text{ mm}}$
- Depth of tracks: X = 0.00 mm

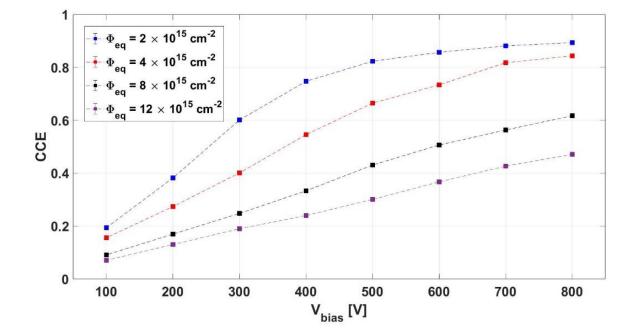

RD50 workshop, 21-23 June 2021	Mohammadtaghi Hajheidari University of Hamburg	23

Back up GEANT4 simulation result

Less energy deposition at edges than center

RD50 workshop, 21-23 June 2021	Mohammadtaghi Hajheidari University of Hamburg	24
---------------------------------------	---	----

Back up CCE as a function of bias voltage

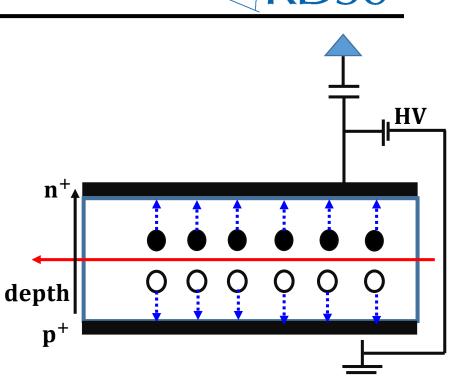


Measurement conditions:

- Temperature: -20 C
- V_{bias} = 100 800 V DUTs:
- Proton irradiated at $\Phi_{eq} = 2, 4, 8, 12 \times 10^{15} \text{ cm}^{-2}$

CCE is calculated as:

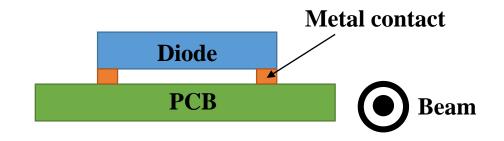
$$CCE(V_{bias}) = \frac{\sum_{x=-150 \ \mu m}^{+150 \ \mu m} Q_{x,irradaited} (V_{bias})}{\sum_{x=-150 \ \mu m}^{+150 \ \mu m} Q_{x,non-irradaited}}$$



Backup Measurement concept

Advantages of using this method:

- The beam direction does not change significantly inside the diode
- The number of e-h pairs produced by beam can be estimated
- The energy deposition of beam is independent of irradiation fluence
- The readout electronic is independent of the Device Under Test (DUT)
- It can be used for pad diodes (simple geometry and weighting field)



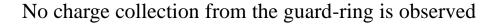
Back up Separation of the diode from PCB

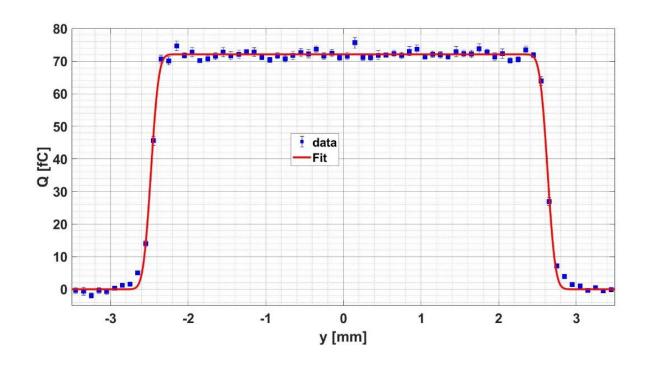
- The electron beam produces showers inside the PCB
- These showers ionizes inside the diode
- Two metal contacts were inserted between PCB and diode to neutralize the effects of showers
- The thickness of these contacts is around 0.5 mm

Back up Charge profile, non-irradiated diode

Estimation of the diode width:

• Fit two error functions to the profile:


$$F(y) = A\left(erf\left(\frac{y-\mu_1}{\sqrt{2}\sigma}\right) - erf\left(\frac{y-\mu_2}{\sqrt{2}\sigma}\right)\right)$$


• Width of the diode is estimated as:

 $w_{diode} = \mu_2 - \mu_1$

The result of the estimation:

 $w_{diode} = 5.11 \pm 0.1 \text{ mm}$

RD50 workshop, 21-23 June 2021Mohammadtaghi Hajheidari
University of Hamburg28