

Time resolution simulation of 2D and 3D SiC detectors

Yuhang Tan¹, Xin Shi¹, Tao Yang¹, Xiaochuan Xia², Hongwei Liang², Kai Liu¹, Mei Zhao¹, Suyu Xiao¹, Ryuta Kiuchi¹, Jianing Lin⁴, Weimin Song⁴, Xinbo Zou³, Kexiong Zhang², Boyue Wu⁵, Zhenzhong Zhang², Ruirui Fan¹, Zhongyuan Han², Ze Long², Mengchen Niu²

¹ Institute of High Energy Physics Chinese Academy of Sciences

² Dalian University of Technology

³ ShanghaiTech University

⁴ Jilin University

⁵ Guangxi University

─ Outline

- Motivation
- > Simulation and measurement of 2D-SiC
- > 3D-SiC simulation
- ➤ 3D-SiC manufacturing

Motivation

- ➤ SiC detectors advantages:
 - High displacement energy good radiation resistance
 - Low dark current and high saturated carrier velocity good time resolution
 - Normal operation at high or normal temperature no need cooling
- ≥ 3D-SiC advantages:
 - Narrow electrode spacing good time resolution and charge collection
 - Thick thickness larger charge collection and signal
 - More radiation resistant

Simulation software RASER for time resolution of SiC detectors

- ➤ RAdiation SEmiconductoR RASER
 - https://github.com/dt-np/raser
- ➤ Purpose of RASER:
 - Predict time resolution of SiC with different structures, voltages, temperatures...
 - Predict effect of irradiation fluence on time resolution of SiC
- > Characteristic of RASER:
 - FEniCS: electric field and weighting potential of 2D,3D SiC detectors
 - ROOT framework with python language

Composition of RASER

FEniCS: Electric field and weighting potential

---(Inspired by TRACS)

MIPs:

Separate Superation of Miles in SiC

Amplitude variability

Induced current: Shockley-Ramo's theorem

---(Reference KDetSim)

- Drift step of e-h: $1 \mu m$
- Thermal diffusion
- > Read-out electronics: simplified charge sensitive amplifier
- ➤ Mobility model and permittivity of 4H-SiC

---(Reference Weightfield2)

2021/6/21 38th RD50 Workshop

Mobility model of 4H-SiC^[1]

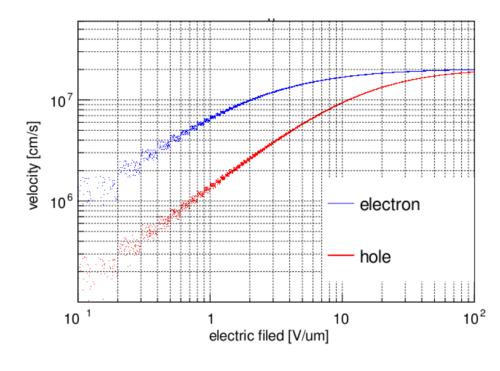
> Low electric field

$$\mu_e = \frac{947 \times \left(\frac{T}{300}\right)^{-2}}{1 + \left(\frac{N_i}{1.94 \times 10^{19}}\right)^{0.61}} \qquad \mu_h = 15.9 + \frac{124 \times \left(\frac{T}{300}\right)^{-2}}{1 + \left(\frac{N_i}{1.76 \times 10^{19}}\right)^{0.34}}$$

$$ightharpoonup$$
 High electric field $\mu_{HF,sat} = \frac{\mu_{low}}{\left(1 + \left(\frac{\mu_{low}E}{v_{sat}}\right)^{\beta_1}\right)}$

Saturation drift velocity of electrons and holes

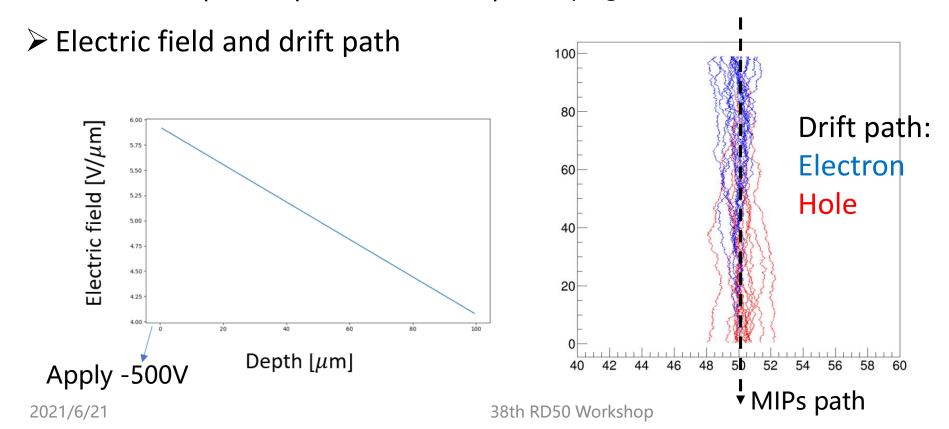
$$v_{sat\ e} = 2 \times 10^7 \left(\frac{T}{300}\right)^{0.87}$$
 $v_{sat\ h} = 2 \times 10^7 \left(\frac{T}{300}\right)^{0.52}$


 β_1 vs temperature

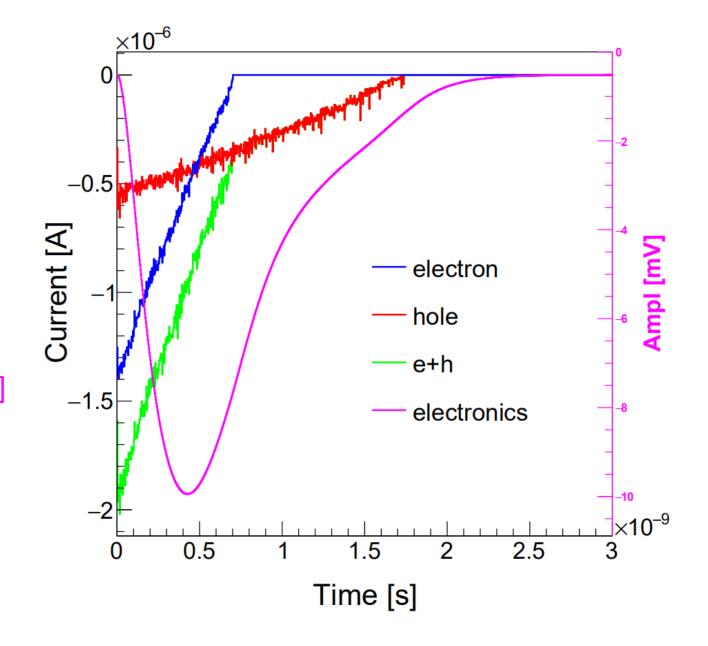
$$\beta 1_e = 1 \times \left(\frac{T}{300}\right)^{0.66}$$
 $\beta 1_h = 1.213 \times \left(\frac{T}{300}\right)^{0.17}$

Anisotropy of 4H-SiC ignored

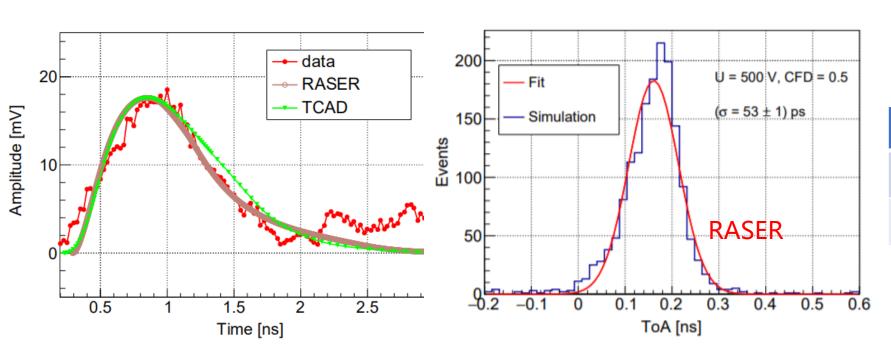
Mobility model in RASER


velocity
$$\begin{cases} v_e = \mu_e \times E \\ v_h = \mu_h \times E \end{cases}$$

Ref [1]. DOI: 10.1093/rpd/ncu369


2D-SiC Simulation – basic information

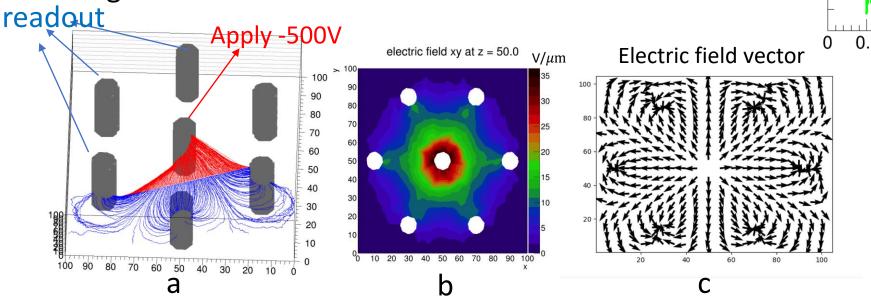
- > Purpose: Compare with measurement to verify reliability of simulation
- > Simulation structure:
 - Size: 100μ mX 100μ m, thickness: 100μ m, doping concentration: 1e13 cm^{-3}

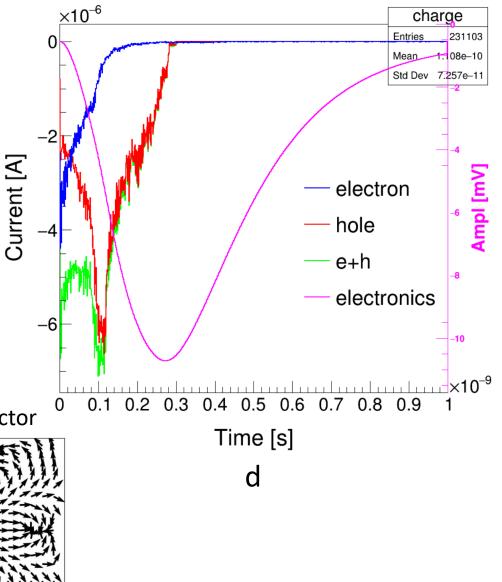

2D-SiC Simulation – current

- > Induced current
 - Electron
 - Hole
 - Electron+hole
- $> v_e > v_h$
- > Amplitude after electronics [mV]
- $\geq t_{rise} < 1 \text{ ns}$
- > Time resolution:
 - Simulate 10000 events
 - Incident parallel to thickness

Comparison for simulation and measurement of 2D-SiC

- > Compare waveform of RASER, TCAD and data, good agreement is obtained
- $\succ \sigma_{fit+TDC}^{sim}$ = 68 ps , and $\sigma_{data} \sigma_{fit+TDC}^{sim}$ = 26 ps (fairly good of simulation)
 - Optimization direction: anisotropy, electronics and incidence angle

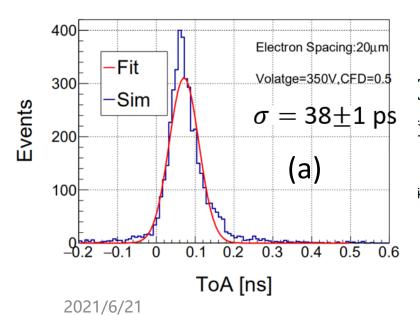

Sampling rate 20Gsa/s

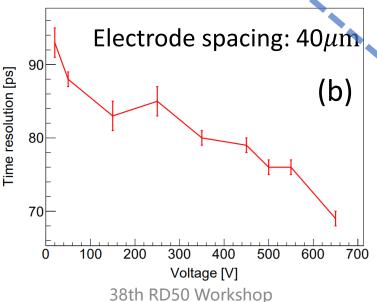

	Time Resolution [ps]		
Data	94 <u>±</u> 1		
Simulation	68 <u>±</u> 1		

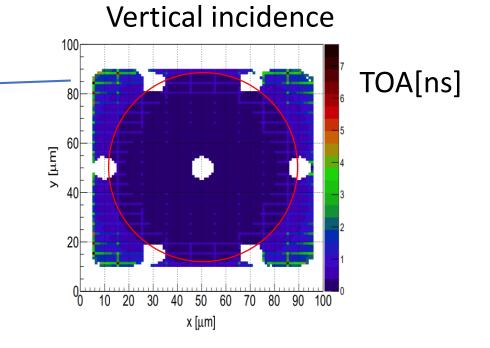
3D-SiC simulation – basic information

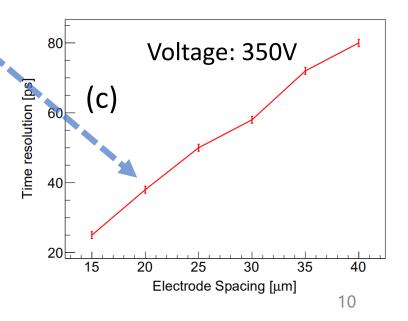
- Fig.a: SiC structure. Electrode radius $5\mu m$, electrode spacing $40\mu m$ and $100\mu m$ thick
- Drift path: blue electrons and red holes in Fig.a
- \triangleright Fig.b and Fig.c: Electric field xy plane at z=50 μ m
 - Fig.c: Explain curvature in the drift path of Fig.a

> Fig.d : Current distribution






2021/6/21 38th RD50 Workshop 9


3D-SiC simulation – time resolution

- \triangleright Detector scan: 10000 events. Step: 1μ mX 1μ m
- Fig.a: Time resolution is 38 ps at 350V with electrode spacing $20\mu m$
- > Fig.b: Time resolution vs voltage
- > Fig.c: Time resolution vs electrode spacing

Dalian University of Technology brief introduction:

Sample device

> GaN based radiation detector:

- Developed: Self powered GaN alpha particle detector
- Designed: GaN 3D neutron detector with position resolution
 - ✓ Theoretical breakdown voltage increases significantly
 - ✓ Leakage current density decreases significantly

➤ SiC based radiation detector:

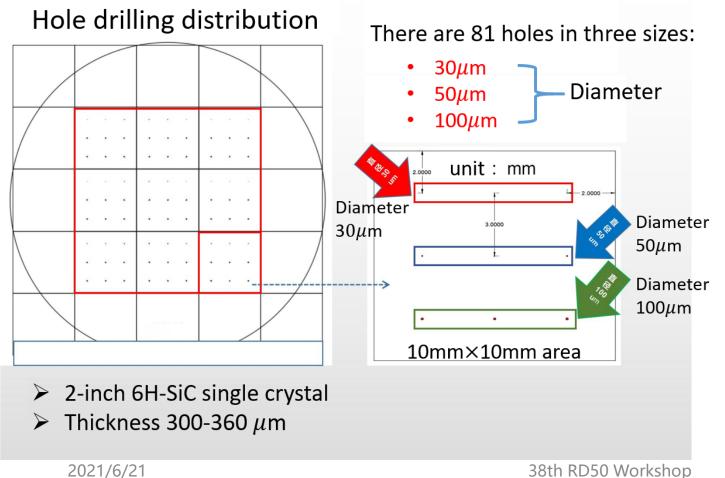
- Developed: Irradiation resistant SiC neutron detector
- Developed: X-ray detector based on SiC single crystal

20mm*20mm

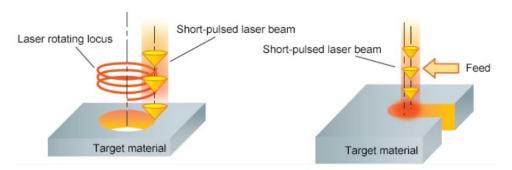
10mm*10mm four pixels

10mm*0.15mm 32 way micro strip

Lithography



3D-SiC manufacturing – 3D drilling


> 6H-SiC Single crystal drilling experiment

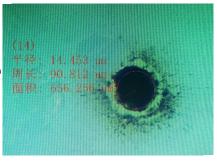
Experiment design

Processing conditions - nanosecond laser

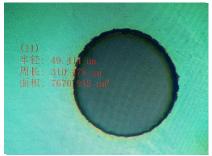
Diameter	Width	Drilling	Power
30 μ m	20 ns	Pulse	4.5W
50 μ m	20 ns	Auger	3W
100 μ m	20 ns	Auger	3W

Auger drilling Pulse drilling www.mhi-machinetool.com/en 12

3D-SiC manufacturing – micrograph and holes distribution


Design diameter

 $30 \mu m$


 $50 \mu m$

 $100 \mu m$

Incident surface

➤ Nonuniform holes

➤ Optimization:

- Picosecond laser
- Femtosecond laser

Exit surface

Design	30 $\mu\mathrm{m}$	50 μ m	100 $\mu\mathrm{m}$
Incident Diameter	29 $\mu\mathrm{m}$	$50~\mu\mathrm{m}$	99 μm
Exit Diameter	11 μ m	16 μ m	73 μ m

3D-SiC manufacturing – 3D drilling plan

- ➤ Samples processed by nanosecond laser
 - Understand current situation
 - Cross section characterization
 - Chemical treatment
 - Cross section characterization
- ➤ Picosecond and femtosecond laser plan
 - Select processing conditions
 - Processing in near future

Summary and plan

- ➤ Developed a new simulation software for time resolution of SiC RASER
- > 2D-SiC: Compare simulation and data for waveform and time resolution
 - Good agreement of waveform is obtained
 - $\sigma_{time}^{\mathrm{dat}a} \sigma_{time}^{\mathrm{sim}}$ = 26 ps, and initial simulation is fairly good
 - Simulation still needs to be optimized

➤ 3D-SiC simulation:

- Scan detector and obtained $\sigma_{time}^{3D_SiC}$
- Obtained trends: $\sigma_{time}^{3D_SiC}$ vs voltage and $\sigma_{time}^{3D_SiC}$ vs electrode spacing
- Plan: simulate $\sigma_{time}^{3D_SiC}$ according to actual sample size and electrode shape

➤ 3D-SiC manufacturing:

- Tried nanosecond laser drilling
- Try picosecond and femtosecond laser drilling in near future