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Agent interacts with environment

• Receives reward after every action

• Learns through trial-and-error

Decision making

• Agent follows certain policy 𝝅: 𝑆 → 𝐴

• Goal: find optimal policy 𝝅∗

• Optimal maximizing return: 𝐺𝑡 = σ𝑘 𝛾𝑘𝑅𝑡+𝑘

Reinforcement learning in a nutshell

Expected return can be estimated through value function Q(s, a)

• “What’s the best action to take in each state” => greedy policy: take action that maximizes Q(s,a)

• Not a priori known, but can be learned iteratively

• Q-learning – learn Q(s, a) using function approximator

• DQN: Deep Q-learning (feed-forward neural network)

• QBM-RL (Quantum Boltzmann Machine)

RL book: Sutton & Barto

source

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://bair.berkeley.edu/blog/2019/05/28/end-to-end/


Motivation

• Why using QBM for RL?

• Free energy based RL (FERL): efficient for high-dim. spaces 
(https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf)

• Higher sample efficiency over Deep Q-learning 
(https://arxiv.org/pdf/1706.00074.pdf)

• Quantum RL: an exciting combination 

• Objective: apply to one of our RL problems: beam steering

DQN QBM

𝝅∗

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf
https://arxiv.org/pdf/1706.00074.pdf


Q-learning with QBM and DQN

DQN: Q-net

• Feed-forward, dense neural network

• 2 hidden layers, 8 nodes each (≈ Chimera graph)

Learning: update Q by applying temporal difference rule to 
QBM and Q-net weights

FERL: clamped QBM

• Network of coupled, stochastic, binary units (spin up / down)

• ෡𝑸 𝒔, 𝒂 ≈ negative free energy of classical spin configurations 𝑐

• Sampling 𝑐 using (simulated) quantum annealing

• Clamped: visible nodes not part of QBM; accounted for as biases

• Here visible nodes are discrete, binary (restriction can be lifted)

• Using 16 qubits of D-Wave Chimera graph
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Toy model: beam steering

• Toy model based on actual steering problem, e.g. for fixed 
target experiments at CERN Super Proton Synchrotron

• OpenAI gym template

• Action: deflection angle

• 2 possibilities: up or down by fixed amount

• State: beam position at BPM

• Reward: integrated beam intensity on target

State
Reward

Action

x
Dipole 
magnet

Beam Position 
Monitor (BPM)

Target

±3
σParticle beam

https://gym.openai.com/


DQN: discrete state space

• Stable-baselines3 implementation of DQN

• Efficiency: required # training_steps after hyperparameter tuning

• 300+ training steps: get optimal policy with nearly 100% success rate

https://stable-baselines3.readthedocs.io/en/master/


QBM: discrete state space, simulated quantum annealing

• Tune QBM-RL with simulated quantum annealing (SQA, library: sqaod)
before moving on D-Wave QPU

• With some tuning: successful training (300 iterations)

• ෠𝑄(𝑠, 𝑎) leads to optimal policy

• Similar efficiency to DQN

𝜋∗(𝑠)

https://github.com/shinmorino/sqaod


• D-Wave training from scratch (600 iterations) after hyperparameter tuning with SQA

• Our first successful RL training on an actual QPU  !

QBM: discrete state space, D-Wave 2000Q



DQN vs QBM: effect of experience replay

• DQN vs QBM: roughly same number of training interactions required

• Not consistent with original paper (40’000 vs. 500 interactions)

• Reason: experience replay (ER)

• DQN: 6000+ interactions (w/o ER)  vs  ~300 interactions (w/ ER)

• QBM: ~300 interactions (w/o ER) vs ~120 interactions (w/ ER)

https://www.endtoend.ai/paper-unraveled/cer/

Online Learning
• Learn directly from latest experience

• Highly correlated data

• Agent learns from each interaction once and 
discards it immediately after

Experience Replay
• Save transitions into memory buffer
• Sample batch B from buffer to train agent at every 
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QBM: continuous state space

• Visible nodes not represented by qubits => no need to be discrete, binary

• Training on D-Wave with continuous state space and ER: ~120 interactions

• Q functions more robust thanks to smaller number of training weights

• Opens doors for more complex and more practical applications

Training (D-Wave) Evaluation (SQA)
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Ongoing work: QBM using QAOA

• QAOA: Quantum Approximate Optimization Algorithm

• Solver for combinatorial optimization problems: find spin configuration 
with minimum energy, not based on annealing

• Works well, but quite compute-intensive (~5.5 h for 100 interactions)

• On hardware (e.g. IBM): to be tested, could be affected by noise

Training Evaluation

https://qiskit.org/textbook/ch-applications/qaoa.html


Ongoing work: actor-critic

• Goal: continuous state and action spaces to tackle real-world problems

• DQN not suitable: only for discrete, low-dimensional action spaces

• Actor-critic algorithm [Deep Deterministic Policy Gradient (DDPG)]

• Actor (= policy network): parameterized action function, mapping states to actions

• Critic (= Q-net): similar to DQN, estimator for Q(s,a)

• Plan is to create hybrid: replace Q-net by QBM; keep classical NN for actor

https://arxiv.org/pdf/1509.02971.pdf


Summary and outlook

Summary

• Comparison between Deep Q-learning (Q-net) and Free Energy Based RL (QBM)

• QBM works for both discrete and continuous state space

• It can be trained successfully with SQA, D-Wave hardware, and QAOA simulator

• Experience replay has an important impact on the training efficiency (here: factor ~3)

• First steps made towards continuous action space using DDPG

Outlook

• Participate in BQIT:21 workshop with poster presentation (26.04. to 28.04.)

• Finish actor-critic implementation

• Continue studies with QAOA

• Move to more complex, higher dimensional environment

http://www.bristol.ac.uk/physics/research/quantum/conferences/bqit-workshop/


Backup



FERL https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf

• In RL: need to estimate action-value functions in high dimensional state-action space where not all 
state-action pairs can be visited (e.g. 240)

• Can no longer use table: use function approximator ෡𝑸(𝒔, 𝒂)

• Conditions: need to be able to calculate derivative of ෡𝑸 wrt. its weights to train using TD rule

• One option: Product of Experts (PoE) models

• Combine simple probabilistic models by multiplying their probability distributions with each other

• e.g. stochastic binary units of BM

• Free energy of such models can be used as approximator of value function, but needs training for 
different visible nodes (state-action pairs)

• Once trained, sampling according to PoE will give probability distribution over actions given a fixed 
state (Boltzmann exploration policy)

• Intuition: good actions sampled more likely than bad ones

• Probabilistic nature provides advantage in large state-action spaces compared to traditional NN

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf


FERL: Clamping

• All nodes of QBM are hidden

• Clamping: add visible nodes as self-couplings (biases) to hidden 
nodes they are connected to and remove them from the graph

• Every spin configuration has specific energy described by 
Hamiltonian of the transverse-field Ising model

Γ: transverse field strength, σx,z: Pauli spin matrices

• Once we measure spin in z direction, we no longer have access to 
transverse component => cannot know system’s energy 

• Can be fixed using replica stacking (Suzuki-Trotter expansion)
see https://arxiv.org/pdf/1706.00074.pdf and refs. therein
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QBM: results on D-Wave 2000Q, part I

• AWS Braket platform: D-Wave 2000Q

• First trainings not successful: hyperparameter scans on 
hardware too expensive

• Train QBM with SQA and reload trained weights on D-Wave

• Evaluation on D-Wave looks promising!

SQA agent evaluation on 
D-Wave 2000Q

Evolution of QBM 
weights during 
training with SQA



QBM: continuous state space I

• Major limitation: discrete, binary state space

• E.g. here we use 8 nodes => 256 bins

• Limited resolution, limited state space dimension, large 
number of coupling weights, slow, training less robust

• QBM is clamped

• Visible nodes are not actually represented by qubits, 
which are binary by definition (spin up / down)

• They enter system only as biases => no need to be 
discrete, binary

• Continuous state space possible

• Opens doors for more complex systems and more 
practical applications

• Later today: actor-critic setup
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Ongoing work: actor-critic II 

• Step 1: test with our implementation of DDPG

• Already separates actor and critic for easier replacement of Q-net (step 2)

• With continuous action space: optimal behaviour means 1 step is enough to solve the problem

• Works well

Training Evaluation


