
Quantum Reinforcement Learning

for Beam Steering

Quantum Technology Initiative Forum: Quantum Computing 26. April 2021

V. Kain, K. Li, M. Schenk, S. Vallecorsa
CERN, Switzerland

M. Popa
Politehnica University of Bucharest, Romania

E. F. Combarro
University of Oviedo, Spain

Contents

• Introduction: RL in a nutshell

• Motivation: QBM vs DQN

• Our project: beam steering

• Results: DQN and QBM

• Ongoing work: QAOA and actor-critic

Agent interacts with environment

• Receives reward after every action

• Learns through trial-and-error

Decision making

• Agent follows certain policy 𝝅: 𝑆 → 𝐴

• Goal: find optimal policy 𝝅∗

• Optimal maximizing return: 𝐺𝑡 = σ𝑘 𝛾𝑘𝑅𝑡+𝑘

Reinforcement learning in a nutshell

Expected return can be estimated through value function Q(s, a)

• “What’s the best action to take in each state” => greedy policy: take action that maximizes Q(s,a)

• Not a priori known, but can be learned iteratively

• Q-learning – learn Q(s, a) using function approximator

• DQN: Deep Q-learning (feed-forward neural network)

• QBM-RL (Quantum Boltzmann Machine)

RL book: Sutton & Barto

source

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://bair.berkeley.edu/blog/2019/05/28/end-to-end/

Motivation

• Why using QBM for RL?

• Free energy based RL (FERL): efficient for high-dim. spaces
(https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf)

• Higher sample efficiency over Deep Q-learning
(https://arxiv.org/pdf/1706.00074.pdf)

• Quantum RL: an exciting combination 

• Objective: apply to one of our RL problems: beam steering

DQN QBM

𝝅∗

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf
https://arxiv.org/pdf/1706.00074.pdf

Q-learning with QBM and DQN

DQN: Q-net

• Feed-forward, dense neural network

• 2 hidden layers, 8 nodes each (≈ Chimera graph)

Learning: update Q by applying temporal difference rule to
QBM and Q-net weights

FERL: clamped QBM

• Network of coupled, stochastic, binary units (spin up / down)

• ෡𝑸 𝒔, 𝒂 ≈ negative free energy of classical spin configurations 𝑐

• Sampling 𝑐 using (simulated) quantum annealing

• Clamped: visible nodes not part of QBM; accounted for as biases

• Here visible nodes are discrete, binary (restriction can be lifted)

• Using 16 qubits of D-Wave Chimera graph

෠𝑄 𝑠, 𝑎 ≈ −𝐹 𝒗 = − 𝐻𝒗
eff −

1

𝛽
෍

𝑐

ℙ 𝑐 𝒗 logℙ 𝑐 𝒗

1
−1
1

1

state

⋮

0.45
𝟏. 𝟐𝟑

...
...

⋮
≈ ෠𝑄 𝑠, 𝑎

Q-net

⋮

vi
si

b
le

 n
o

d
es

 v

𝑤𝑣ℎ

st
a

te
a

ct
io

n

ℎ
𝑤ℎℎ′

ℎ′

Clamped QBM

Toy model: beam steering

• Toy model based on actual steering problem, e.g. for fixed
target experiments at CERN Super Proton Synchrotron

• OpenAI gym template

• Action: deflection angle

• 2 possibilities: up or down by fixed amount

• State: beam position at BPM

• Reward: integrated beam intensity on target

State
Reward

Action

x
Dipole
magnet

Beam Position
Monitor (BPM)

Target

±3
σParticle beam

https://gym.openai.com/

DQN: discrete state space

• Stable-baselines3 implementation of DQN

• Efficiency: required # training_steps after hyperparameter tuning

• 300+ training steps: get optimal policy with nearly 100% success rate

https://stable-baselines3.readthedocs.io/en/master/

QBM: discrete state space, simulated quantum annealing

• Tune QBM-RL with simulated quantum annealing (SQA, library: sqaod)
before moving on D-Wave QPU

• With some tuning: successful training (300 iterations)

• ෠𝑄(𝑠, 𝑎) leads to optimal policy

• Similar efficiency to DQN

𝜋∗(𝑠)

https://github.com/shinmorino/sqaod

• D-Wave training from scratch (600 iterations) after hyperparameter tuning with SQA

• Our first successful RL training on an actual QPU  !

QBM: discrete state space, D-Wave 2000Q

DQN vs QBM: effect of experience replay

• DQN vs QBM: roughly same number of training interactions required

• Not consistent with original paper (40’000 vs. 500 interactions)

• Reason: experience replay (ER)

• DQN: 6000+ interactions (w/o ER) vs ~300 interactions (w/ ER)

• QBM: ~300 interactions (w/o ER) vs ~120 interactions (w/ ER)

https://www.endtoend.ai/paper-unraveled/cer/

Online Learning
• Learn directly from latest experience

• Highly correlated data

• Agent learns from each interaction once and
discards it immediately after

Experience Replay
• Save transitions into memory buffer
• Sample batch B from buffer to train agent at every

step0 2000 4000 6000 8000

100 200 300 400 500
Training interactions

Training interactions

DQN with ER

DQN without ER

100

80

60

40

20

O
p

ti
m

al
it

y
(%

)

0

100

80

60

40

20

O
p

ti
m

al
it

y
(%

)

0

50 150 250 350 450

Training interactions
20 40 80 100 12060

Training interactions

100

90

80

70

60

O
p

ti
m

al
it

y
(%

)

50

100

80

60

40

20

O
p

ti
m

al
it

y
(%

)

0 QBM with ER

QBM without ER

https://arxiv.org/pdf/1706.00074.pdf
https://www.endtoend.ai/paper-unraveled/cer/

QBM: continuous state space

• Visible nodes not represented by qubits => no need to be discrete, binary

• Training on D-Wave with continuous state space and ER: ~120 interactions

• Q functions more robust thanks to smaller number of training weights

• Opens doors for more complex and more practical applications

Training (D-Wave) Evaluation (SQA)

−
𝐹
(𝑣
)

Q-functions (SQA)

⋮

vi
si

b
le

 n
o

d
es

 v

𝑤𝑣ℎ

st
a

te
a

ct
io

n

ℎ
𝑤ℎℎ′

ℎ′

Clamped QBM

Ongoing work: QBM using QAOA

• QAOA: Quantum Approximate Optimization Algorithm

• Solver for combinatorial optimization problems: find spin configuration
with minimum energy, not based on annealing

• Works well, but quite compute-intensive (~5.5 h for 100 interactions)

• On hardware (e.g. IBM): to be tested, could be affected by noise

Training Evaluation

https://qiskit.org/textbook/ch-applications/qaoa.html

Ongoing work: actor-critic

• Goal: continuous state and action spaces to tackle real-world problems

• DQN not suitable: only for discrete, low-dimensional action spaces

• Actor-critic algorithm [Deep Deterministic Policy Gradient (DDPG)]

• Actor (= policy network): parameterized action function, mapping states to actions

• Critic (= Q-net): similar to DQN, estimator for Q(s,a)

• Plan is to create hybrid: replace Q-net by QBM; keep classical NN for actor

https://arxiv.org/pdf/1509.02971.pdf

Summary and outlook

Summary

• Comparison between Deep Q-learning (Q-net) and Free Energy Based RL (QBM)

• QBM works for both discrete and continuous state space

• It can be trained successfully with SQA, D-Wave hardware, and QAOA simulator

• Experience replay has an important impact on the training efficiency (here: factor ~3)

• First steps made towards continuous action space using DDPG

Outlook

• Participate in BQIT:21 workshop with poster presentation (26.04. to 28.04.)

• Finish actor-critic implementation

• Continue studies with QAOA

• Move to more complex, higher dimensional environment

http://www.bristol.ac.uk/physics/research/quantum/conferences/bqit-workshop/

Backup

FERL https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf

• In RL: need to estimate action-value functions in high dimensional state-action space where not all
state-action pairs can be visited (e.g. 240)

• Can no longer use table: use function approximator ෡𝑸(𝒔, 𝒂)

• Conditions: need to be able to calculate derivative of ෡𝑸 wrt. its weights to train using TD rule

• One option: Product of Experts (PoE) models

• Combine simple probabilistic models by multiplying their probability distributions with each other

• e.g. stochastic binary units of BM

• Free energy of such models can be used as approximator of value function, but needs training for
different visible nodes (state-action pairs)

• Once trained, sampling according to PoE will give probability distribution over actions given a fixed
state (Boltzmann exploration policy)

• Intuition: good actions sampled more likely than bad ones

• Probabilistic nature provides advantage in large state-action spaces compared to traditional NN

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf

FERL: Clamping

• All nodes of QBM are hidden

• Clamping: add visible nodes as self-couplings (biases) to hidden
nodes they are connected to and remove them from the graph

• Every spin configuration has specific energy described by
Hamiltonian of the transverse-field Ising model

Γ: transverse field strength, σx,z: Pauli spin matrices

• Once we measure spin in z direction, we no longer have access to
transverse component => cannot know system’s energy

• Can be fixed using replica stacking (Suzuki-Trotter expansion)
see https://arxiv.org/pdf/1706.00074.pdf and refs. therein

ℎ′

⋮

Visible
nodes

𝑤𝑣ℎ

in
p

u
ts

o
u

tp
u

ts

ℎ

𝑤ℎℎ′

https://arxiv.org/pdf/1706.00074.pdf

QBM: results on D-Wave 2000Q, part I

• AWS Braket platform: D-Wave 2000Q

• First trainings not successful: hyperparameter scans on
hardware too expensive

• Train QBM with SQA and reload trained weights on D-Wave

• Evaluation on D-Wave looks promising!

SQA agent evaluation on
D-Wave 2000Q

Evolution of QBM
weights during
training with SQA

QBM: continuous state space I

• Major limitation: discrete, binary state space

• E.g. here we use 8 nodes => 256 bins

• Limited resolution, limited state space dimension, large
number of coupling weights, slow, training less robust

• QBM is clamped

• Visible nodes are not actually represented by qubits,
which are binary by definition (spin up / down)

• They enter system only as biases => no need to be
discrete, binary

• Continuous state space possible

• Opens doors for more complex systems and more
practical applications

• Later today: actor-critic setup

⋮

vi
si

b
le

 n
o

d
es

 v

𝑤𝑣ℎ

st
a

te
a

ct
io

n

ℎ
𝑤ℎℎ′

ℎ′

Clamped QBM

෠𝑄 𝑠, 𝑎 ≈ −𝐹 𝒗 = − 𝐻𝒗
eff −

1

𝛽
෍

𝑐

ℙ 𝑐 𝒗 logℙ 𝑐 𝒗

𝐻𝑣
eff = − ෍

𝑣∈𝑉, ℎ∈𝐻

𝑤𝑣ℎ 𝑣 𝜎ℎ
𝑣 − ෍

ℎ,ℎ′∈𝐻

𝑤ℎℎ′ 𝜎ℎ
𝑧𝜎ℎ′

𝑧

Ongoing work: actor-critic II

• Step 1: test with our implementation of DDPG

• Already separates actor and critic for easier replacement of Q-net (step 2)

• With continuous action space: optimal behaviour means 1 step is enough to solve the problem

• Works well

Training Evaluation

