

Mit Quantenkorrekturen neuen Phänomenen auf der Spur

Ulrich Uwer • Physikalisches Institut • Universität Heidelberg

Standardmodell der Teilchenphysik

http://www.physics.gla.ac.uk/ppt/research.htm

Suche nach Neuen Phänomenen

Bei höchsten Energien

Mit Präzisionsexperimenten

Neue virtuelle Teilchen in Quantenkorrekturen

Myon (g-2) Elektrisches Dipolmoment Lepton-Flavor Verletzung Seltene K- , c- and **b-hadron** Zerfälle

Indirekte Suchen bis O(100 TeV++)

Quark-Sektor

Г	Massen			
	u	d	S	
	2.3	4.8	95	MeV/c ²
	С	b	t	
	1270	4200	173500	MeV/c ²

Quarks tragen Farbladung r g b: Ladungs der starken Wechelwirkung

Quarks existieren nicht frei, sondern nur in farbneutralen gebunden Zuständen = Hadronen: Baryonen qqq and Mesonen q \overline{q} .

Hadronen mit "schweren Quarks"

Mes	onen q̄q>		Anti-Meso	nen
S	$K^+ = u\overline{s}\rangle$	$K^{0} = \left d\overline{s} \right\rangle$	$\overline{K}^{0} = \left \overline{d} s \right\rangle$	$K^- = \overline{u}s\rangle$
С	$D^{+}=\left c\overline{d} ight angle$	$D^{\scriptscriptstyle 0}=ig m{c}\overline{m{u}}ig angle$	$\overline{D}^{0} = \left \overline{c}u\right\rangle$	$D^{-}=\left \overline{c}d\right\rangle$
b	$B^{+}=\left u\overline{b} ight angle$	$B^{0} = \left d\overline{b} \right\rangle$	$\overline{B}^{0} = \left \overline{d} b \right\rangle$	$B^- = \left \overline{u} b \right\rangle$
	$B_{c}^{\scriptscriptstyle +} = \left c \overline{b} \right\rangle$	$B_{s} = \left s\overline{b} \right\rangle$	$\overline{B}_{s} = \left \overline{s} b \right\rangle$	$B_{c}^{-}=\left \overline{c}b\right\rangle$

Baryonen |qqq>

$$\Lambda = \left| \textit{uds} \right\rangle \ \Lambda_{c}^{+} = \left| \textit{udc} \right\rangle \ \Lambda_{b} = \left| \textit{udb} \right\rangle$$

	M [GeV/c²]	τ [ps]
D	2	0.4
В	56	1.5

β-Zerfälle

$$\begin{pmatrix} \mathbf{V}_{\mu} \\ \mathbf{I}_{\mu}^{\mu} \\ \boldsymbol{\mu} \end{pmatrix}$$

$$\left(\begin{array}{c} u \\ \dagger \\ d \end{array}\right)$$

Schwache Zerfälle von b-Mesonen

$$\begin{pmatrix} \mathbf{v}_{\mathbf{e}} \\ \mathbf{e}^{-} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{\mu} \\ \mathbf{f}_{-}^{\mu} \\ \boldsymbol{\mu}^{-} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{\tau} \\ \boldsymbol{\tau}^{-} \end{pmatrix}$$

Quark Mischung

N.Cabibbo (1963), M.Kobayashi & T.Maskawa (1973)

Virtueller Teilchenaustausch: schwere Teilchen in Loops

Quanten-Loops at Work

Erstmals beobachtet ARGUS (DESY), 1987

B⁰

 \overline{B}^0

Interessant:

B-meson (5 GeV) sensitive auf Teilchen mit 100 – 200 GeV

"Neue Phänomene" in Quanten-Loops

Man sucht nach Abweichungen vom Standardmodell: Loop-Prozesse und Messgrößen mit kleinem Theorie-Fehler Hochraten-Experimente um hohe Präzision zu erreichen: **LHCb**

Large Hadron Collider

ALICE

ATLAS

RADO Raysiker. TUSOINSUNDIE Uni Heidelberg MPI-Heidelberg Uni Bonn CMS

B und D Mesonen am LHC

B und D Mesonen Produktion am LHC: 1 000 000 000 000 BB / Jahr in LHCb 20 000 000 000 000 DD / Jahr in LHCb

BB Ereignis in LHCb

BB Ereignis in LHCb

40 Millionen Mal pro Sekunde

Neue Phänomene in Pinguin-Zerfällen

by A. Lenz

Theorie:

Zerfallskanal besitz hohe Sensitivität für neue Phänomene. Observablen: Raten, Winkelverteilungen...

Neue Phänomene in Pinguin-Zerfällen

Für Experten

Winkelverteilung in β-Zerfällen

"Wu-experiment" um Lorentz-Struktur von β -Zerfall zu studieren.

Chien-Shiung Wu, 1956

"Wu-experiment" mit B-Zerfällen: Lorentz-Struktur

Winkelverteilung in $B^0 \rightarrow K^{0*} + \mu\mu$

Beschreibe Winkelverteilung mathematisch und messe Koeffizienten der Beschreibung:

z.B. **P**₅'

- Statistische Fluktuation oder wirklicher Effekt?
- Neue Physik oder Problem mit der Theorie?

P_5 in $B^+ \rightarrow K^{+*} + \mu\mu$

Austausch des "Zuschauer-Quarks" sollte an Physik nichts ändern!

P_5 in $B^+ \rightarrow K^{+*} \mu^+ \mu^-$

Statistische Unsicherheiten sehr groß, aber interessant! Vielleicht doch ein wirklicher Effekt? Theorie-Diskussionen über Unsicherheiten bei P₅' Vorhersage.

Wie sieht es mit anderen Leptonen aus?

Standardmodell: e und µ verhalten sich gleich - Leptonuniversalität

B⁰→K^{0*} + e⁺e⁻

Problem:

Elektronennachweis in LHCb sehr schwierig:

Bremsstrahlung erschwert "Trigger" und Rekonstruktion

Idee: R_{K*}

 $R_{\kappa^*} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu \mu)}{\mathcal{B}(B^0 \to K^{*0} ee)} \approx 1$

R_{K*}

Völlig unerwartet - interessant.

$R_{\kappa} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu \mu)}{\mathcal{B}(B^{+} \to K^{+} ee)} \approx 1$

Ist die Leptonuniversalität in B-Zerfällen tatsächlich verletzt? Oder ist es vielleicht doch ein Messeffekt?

Verstehen wir unseren Detektor?

$$r_{J/\psi} = \frac{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} = 1, \qquad \begin{array}{l} \text{Keine Loops} \\ \to \text{keine NP} \end{array}$$

 $r_{J/\psi} = 0.981 \pm 0.020 \text{ (stat + syst)}$

Keine Anzeichen dass bei der Messung etwas "faul" ist.

Alle Messungen auf einen Blick

Alles statistische Fluktuationen ? Oder doch experimentelles Problem? Oder Theorie-Problem?

Oder doch neue Phänomene?

5

Globale Auswertung aller Daten

Auswertung aller Daten mit b→sµµ

Neue Phänomene?

Leptoquarks wäre eine populäre Möglichkeit ein "Problem" in B-Zerfällen mit Myonen zu erklären

Zusammenfassung

- Messungen sogenannter b → sµµ Pinguin-Übergänge zeigen eine Reihe von Abweichungen zur Standardmodell-Vorhersage: P₅[•], R_K, BR
- Signifikanteste Abweichung zur Vorhersage wurde f
 ür R_K mit 3.1σ gemessen: Statistische Fluktuation oder wirklicher Effekt?
- Wenn sich das Ergebnis bestätigt, wäre die Elektron-Myon-Universalität in diesen Zerfällen verletzt: Das wäre ein erster Hinweis auf neue Phänomene.
- LHCb startet im Februar 2022 mit einem neuen Detektor in eine neue Datennahme - mind. Faktor 5 mehr Daten.

Myon g-2

Daten zu R_K

Standardabweichungen

Feynman-Graphen

LHCb Detektor

