It's On!

Using ATLAS' First Results from Jets and Missing Energy Searches

Jay Wacker
SLAC

with Daniele Alves \& Eder Izaguirre
arXiv:1008:0407

LHC is the New Energy Frontier

(but you still need luminosity)

Nevertheless, the first Jets+MET Search came out with $70 \mathrm{nb}^{-1}$ of integrated luminosity

ATLAS NOTE
ATLAS-CONF-2010-065

20 July, 2010

Early supersymmetry searches in channels with jets and missing transverse momentum with the ATLAS detector

Abstract

This note describes a first set of measurements of supersymmetry-sensitive variables in the final states with jets, missing transverse momentum and no leptons from the $\sqrt{s}=7 \mathrm{TeV}$ proton-proton collisions at the LHC. The data were collected during the period March 2010 to July 2010 and correspond to a total integrated luminosity of $70 \pm 8 \mathrm{nb}^{-1}$. We find agreement between data and Monte Carlo simulations indicating that the Standard Model backgrounds to searches for new physics in these channels are under control.

Amazing that such an early search is possible!

Not much time for interpretation of results

Clear mSUGRA isn't reachable yet
mSugra has "Gaugino Mass Unification"

$$
m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}}=\alpha_{3}: \alpha_{2}: \alpha_{1} \simeq 6: 2: 1
$$

Most models look like this

A shocking lack of diversity (see the pMSSM)

Jets + MET

Solution to Hierarchy Problem

If the symmetry commutes with $\mathrm{SU}(3)_{\mathrm{C}}$, new colored top partners (note twin Higgs exception)

Dark Matter

Wimp Miracle: DM a thermal relic if mass is 100 GeV to 1 TeV
Usually requires a dark sector, frequently contains new colored particles

Fewest requirements on spectroscopy
Doesn't require squeezing in additional states to decay chains

Spectrum in Different Theories

MSSM

High Cut-Off
Large Mass Splittings
$\delta m=\frac{g^{2}}{16 \pi^{2}} m \log \Lambda$

Universal Extra Dimensions

Low Cut-Off
Small Mass Splittings

$$
\delta m=\frac{g^{2}}{16 \pi^{2}} \frac{\Lambda^{2}}{m}
$$

Electrically Neutral Colored Particles

Weak model independent limits Limits come from event shape variables at LEP (e.g. Thrust)

FIG. 2: Bounds on light colored particles from lep data. The darker region is completely excluded at 95% confidence. The lighter region is an uncertainty band including estimates of various theoretical uncertainties.

A Comparison Between Optimized Cuts and Original Cuts

$$
m_{\tilde{g}}=210 \mathrm{GeV} \quad m_{\tilde{B}}=100 \mathrm{GeV}
$$

Dijet most effective channel

$$
H_{T} \geq 300 \mathrm{GeV} \quad E_{T} \geq 225 \mathrm{GeV} \quad H_{T} \geq 150 \mathrm{GeV} \quad \mathbb{E}_{T} \geq 100 \mathrm{GeV}
$$

A Comparison Between Optimized Cuts and Original Cuts

$$
m_{\tilde{g}}=210 \mathrm{GeV} \quad m_{\tilde{B}}=100 \mathrm{GeV}
$$

Dijet most effective channel

$H_{T} \geq 300 \mathrm{GeV} \quad E_{T} \geq 225 \mathrm{GeV} \quad H_{T} \geq 150 \mathrm{GeV} \quad E_{T} \geq 100 \mathrm{GeV}$

Not easy...

ATLAS Search

$$
\mathcal{L}=70 \mathrm{nb}^{-1}
$$

Performed 4 Searches

Cut	Topology	$1 j+E_{T}$	$2^{+} j+\#_{T}$	$3^{+} j+\#_{T}$	$4^{+} j+\#_{T}$
1	$p_{T 1}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$
2	$p_{\text {Tn }}$	$\leq 30 \mathrm{GeV}$	$>30 \mathrm{GeV}(n=2)$	$>30 \mathrm{GeV}(n=2,3)$	$>30 \mathrm{GeV}(n=2-4)$
3	$\#_{T E M}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$
4	$p_{T \ell}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$
5	$\Delta \phi\left(j_{n}, E_{T E M}\right)$	none	$[>0.2,>0.2]$	$[>0.2,>0.2,>0.2]$	$[>0.2,>0.2,>0.2$, none $]$
6	$B_{T E M} / M_{\text {eff }}$	none	>0.3	>0.25	>0.2

Relatively loose cuts

Under pretty good control!

(monojets appear a bit dirty)

ATLAS Search

$$
\mathcal{L}=70 \mathrm{nb}^{-1}
$$

Performed 4 Searches

Cut	Topology	$1 j+E_{T}$	$2^{+} j+E_{T}$	$3^{+} j+E_{T}$	$4^{+} j+E_{T}$
1	$p_{T 1}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$
2	$p_{\text {Tn }}$	$\leq 30 \mathrm{GeV}$	$>30 \mathrm{GeV}(n=2)$	$>30 \mathrm{GeV}(n=2,3)$	$>30 \mathrm{GeV}(n=2-4)$
3	$E_{T E M}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$
4	$p_{T \ell}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$
5	$\Delta \phi\left(j_{n}, \not \ddot{T V M}^{\text {TEM }}\right.$)	none	[$>0.2,>0.2$]	$[>0.2,>0.2,>0.2]$	$[>0.2,>0.2,>0.2$, none $]$
6	\# $_{\text {TEM }} / M_{\text {eff }}$	none	>0.3	>0.25	>0.2
	$N_{\text {Pred }}$	46_{-14}^{+22}	6.6 ± 3.0	1.9 ± 0.9	1.0 ± 0.6
	$N_{\text {Obs }}$	73	4	0	1

Relatively loose cuts
Under pretty good control!
(monojets appear a bit dirty)

How we used this result

$$
\begin{gathered}
N_{s}=\mathcal{L} \sigma(p p \rightarrow \tilde{g} \tilde{g} X) \epsilon\left(m_{\tilde{g}}, m_{\chi}\right) \\
P\left(N_{s+b} \leq N_{\mathrm{obs}}\right) \geq 5 \% \\
P\left(N_{s+b} \leq N_{\mathrm{obs}}\right)=\sum_{n}^{N_{\mathrm{obs}}} \operatorname{Poisson}\left(n ; N_{s+b}\right) \\
\quad \operatorname{Poisson}(n ; \lambda)=\frac{\lambda^{n}}{n!} e^{-\lambda}
\end{gathered}
$$

How we used this result

$$
\begin{gathered}
N_{s}=\mathcal{L} \sigma(p p \rightarrow \tilde{g} \tilde{g} X) \epsilon\left(m_{\tilde{g}}, m_{\chi}\right) \\
P\left(N_{s+b} \leq N_{\mathrm{obs}}\right) \geq 5 \% \\
P\left(N_{s+b} \leq N_{\mathrm{obs}}\right)=\sum_{n}^{N_{\mathrm{obs}}} \operatorname{Poisson}\left(n ; N_{s+b}\right) \\
\quad \operatorname{Poisson}(n ; \lambda)=\frac{\lambda^{n}}{n!} e^{-\lambda}
\end{gathered}
$$

Fold in uncertainties:
$\int d \mathcal{L} f^{\prime}\left(\mathcal{L} ; \mu_{\mathcal{L}}, \sigma_{\mathcal{L}}\right) . \quad \mathcal{L}=70 \pm 8 \mathrm{nb}^{-1}$
Normal distribution
$\int d \mathcal{L} f\left(N_{b} ; \mu_{b}, \sigma_{b}\right)$.

$$
N_{b 3+j}=1.9 \pm 0.9
$$

Log Normal distribution (keeps background positive)

Sets limit on

$$
\sigma(p p \rightarrow \tilde{g} \tilde{g} X) \epsilon
$$

Cut	Topology	$1 j+\#_{T}$	$2^{+} j+\#_{T}$	$3^{+} j+\#_{T}$	$4^{+} j+\#_{T}$
1	$p_{T 1}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$
2	$p_{T n}$	$\leq 30 \mathrm{GeV}$	$>30 \mathrm{GeV}(n=2)$	$>30 \mathrm{GeV}(n=2,3)$	$>30 \mathrm{GeV}(n=2-4)$
3	$E_{T E M}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$
4	$p_{T \ell}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$	$\leq 20 \mathrm{GeV}$
5	$\Delta \phi\left(j_{n}, \mathbb{E}_{T \mathrm{EM}}\right)$	none	[$>0.2,>0.2$]	$[>0.2,>0.2,>0.2]$	$[>0.2,>0.2,>0.2$, none $]$
6	$E_{T E M} / M_{\text {eff }}$	none	>0.3	>0.25	>0.2
	$N_{\text {Pred }}$	46_{-14}^{+22}	6.6 ± 3.0	1.9 ± 0.9	1.0 ± 0.6
	$N_{\text {Obs }}$	73	4	0	1
	$\left.\sigma(p p \rightarrow \tilde{g} \tilde{g} X) \epsilon\right\|_{95 \%}$ C.L.	663 pb	46.4 pb	20.0 pb	56.9 pb

$3^{+} j+E_{T}$ usually most effective

How many color octets can you make with

$$
\sigma(p p \rightarrow \tilde{g} \tilde{g})=20 \mathrm{pb} ?
$$

Can get above the Tevatron's current bounds with reasonable efficiencies

Need to calculate efficiencies

(the hard part)
We need to know what fraction of the events from a given theory pass the cuts

Madgraph \longrightarrow Pythia \longrightarrow PGS \longrightarrow Cuts

$$
p p \rightarrow \tilde{g} \tilde{g}+\leq 2 j \quad \tilde{g} \rightarrow 2 j \chi_{1}^{0}
$$

Efficiency is the fraction of events that passed the cuts
Do this for each ($m_{\tilde{g}}, m_{\chi}$) pair

The problems with "MET"

Missing transverse momentum is computed from calorimeter cells belonging to topological clusters at the electromagnetic scale [30]. No corrections for the different calorimeter response of hadrons and electrons/photons or for dead material losses are applied. The transverse missing momentum

"true" MET/"EM" MET

Effectively raises MET cut by 35% to 50%

Without calibrated MET, have

 to take a shot in the dark and validate

Straight PGS MET

PGS MET/1.5

PGS MET with linear fit to Sum ET

Three jet channel

Fractional MET Cut

Linear HT Fit underestimates high fractional MET

Two jet channel

Linear HT Fit underestimates high fractional MET

Putting it all together

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

3 jet channel most important

Best limit on cross section

$$
\sigma_{3+j} \epsilon \leq 20 \mathrm{pb} \quad \text { vs } \quad \sigma_{4^{+} j} \epsilon \leq 57 \mathrm{pb}
$$

Efficiency lower to get 4 jets with $p_{T}>30 \mathrm{GeV}$

$$
\begin{gathered}
\text { for } \quad\left(m_{\tilde{g}}, m_{\chi}\right) \simeq(300,0) \mathrm{GeV} \\
E_{j} \sim 100 \mathrm{GeV}
\end{gathered}
$$

only 50% of the events that pass $\mathrm{p}_{\mathrm{T} j}>30 \mathrm{GeV}$, pass $\mathrm{p}_{\mathrm{T} j 4}>30 \mathrm{GeV}$

The slight loss of sensitivity at lower LSP mass from fractional MET cut

$$
f=\frac{\mathbb{E}_{T}}{H_{T}+\not E_{T}}
$$

In limit $m_{\chi} \rightarrow m_{\tilde{g}}, p_{\chi}=E_{j}$ maximizes f, and drops for lighter LSP

Matching on the signal can be a sizeable correction New Initial States
Possible at higher order
$g g, q \bar{q} \rightarrow 2 \tilde{g}+0^{+} j \quad g q \rightarrow 2 \tilde{g}+1^{+} j \quad q q \rightarrow 2 \tilde{g}+2^{+} j$
Parton Luminosities

A careful look at the signal

150 GeV particle going to 140 GeV LSP and 2 jets

In rest frame of each gluino: two 3 GeV "jets" and a LSP with 3 GeV momentum

A careful look at the signal

150 GeV particle going to 140 GeV LSP and 2 jets
In rest frame of each gluino:
two 3 GeV "jets" and a LSP with 3 GeV momentum

Parton level \tilde{B}

Detector level

Totally invisible: faked by QCD with $\sqrt{\hat{s}}_{\mathrm{BG}} \sim 20 \mathrm{GeV}$

Give the gluino big boost!

$$
\tilde{B} \quad j_{4}
$$

$$
p_{T \tilde{g}} \gg m_{\tilde{g}}
$$

$$
j_{2}
$$

Radiate off additional jet
Unbalances momentum of gluinos

Effects of matching on limits

Pretty soft jets, yet matching is still making a difference

Higher multiplicities affected more

Generally increases sensitivity

Efficiencies are over estimated with jet vetos

Cascade Decays

Harder to see these events, lower MET, higher HT

$$
\tilde{g} \rightarrow q \bar{q}^{\prime} \chi^{ \pm} \rightarrow q \bar{q}^{\prime}\left(\chi^{0} W^{ \pm(*)}\right)
$$

Chose a slice through the parameter space

$$
m_{\chi^{ \pm}}=\frac{1}{2}\left(m_{\tilde{g}}+m_{\chi^{0}}\right)
$$

Cascade Decays

Harder to see these events, lower MET, higher HT

$$
\tilde{g} \rightarrow q \bar{q}^{\prime} \chi^{ \pm} \rightarrow q \bar{q}^{\prime}\left(\chi^{0} W^{ \pm(*)}\right)
$$

Chose a slice through the parameter space

$$
m_{\chi^{ \pm}}=\frac{1}{2}\left(m_{\tilde{g}}+m_{\chi^{0}}\right)
$$

Missing energy changes dramatically between

$$
W^{ \pm} \text {vs } W^{ \pm *}
$$

Cascade Decays

Lots more coming...
 Already have lepton searches

ATLAS NOTE
ATLAS-CONF-2010-066

July 20, 2010

Early supersymmetry searches with jets, missing transverse momentum and one or more leptons with the ATLAS Detector

We could have already had anomalies from new physics
Just crossed $1 \mathrm{pb}^{-1}, 15$ times more data than these analyses!
Each new search has potential for discovery

