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* Sources of background at‘ Muon Collider

L

The Background Issue

€ beam halo, Bethe-Heitler muon flux
€ Muon beam decays is the major source: detector irradiation by particle
@ fluxes from beam line components and accelerator tunnel.

€ For 750 GeV muon beam of 2¥10'2 - 4.3*105 decays/m per bunch crossing,
or 1.3%101° decays/m/s for two beams.

@ 1P incoherent e+e- pair production, ~3*10* e+e- pairs per bunch crossing
@ 1P ptp- collisions — negligible at large radii —

Background mitigating measures

€ Collimating nozzle at IP, detector magnetic field

€ ~10T dipole magnets to sweep decay electrons in IR (interaction region),
with tungsten masks in between

€ Currently achieved reduction of machine background from MARS study
is ~ 3 orders of magnitude (depends on the nozzle angle)

€ Super-cooling and Low emittance MC design (Muons, Inc.) — same
luminosity, factor of 5-10 teim fewer muons.
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1996 Muon Collider Detector
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- IR
IIIustratlon of a quadrant of a typical detector at a muon
collider. The forward region, within a 20° cone, is filled with
dense shielding, and is not instrumented. Newer studies can
reduce the cone size and investigate the feasibility of this
! forward area to be instrumented for particle detectlon
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Scaling the Cone

We wish to investigate the
dependence of the
detector backgrounds
with respect to the
shielding cone angle.

We have left inner radii
and segmentation in z
alone.

We have scaled the cone
nenmetrv hv nngle as




Using G4BL for Shielding Simulations

e AR TR R
AT
6° Cone 10° Cone *Examine conical shielding
with angles from 6° to 20°
*For each configuration we
run10Ketand e
*Each run takes 3 days
on the NICADD cluster
*Minimum energy cut
of 200 keV to stop
tracking.
*Fluxes are scored ata 47
cm cylindrical plane.

§
\ j ] I..l'
1
"
|
]

¥




G4BL Fluxes as a Function of
Conical Angle
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Particle fluxes at R=47 cm
Minimum particle kinetic energy: 200 keV




% Interior Design of the Tungsten
'l ) Shleldlng
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--'.1?33 * The tungsten shielding is
", . designed so that the detector

~ . isnotconnected by a
s straightline with any surface
",,{':‘L surface hit by a decay

| electron in forward or
. backward direction.

@B 250 GeV case  This is from the 1996
Snowmass Muon Collider
Study 6 cm by 4 m from IP
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Detector Upgrades relevant to instrumented
shielding...

' ¥ |+ Challenges:
. i
1| — Radiation hardness

; — Granularity (cross talk)

— Time resolution

'?_, - — Temperature change

., * Developments:
. — Photon detectors: Geiger-mode avalanche photo-diode

— Calorimeters: instrumented tungsten, Fast gas-cerenkov
calorimeters

— Large-scale “pico-second’ detectors: microchannel plates

- % _— Diamond detectors



CALICE: instrumented tungsten prototype

. * Northern lllinois University (NIU) has been involved with the design and
operation of a silicon-tungsten electromagnetic calorimeter and a steel-

'. scintillator hadron shower imager as part of the CALICE test beam

' program at the H6B area at CERN.

p o (a)

made by the NIU group; (b): Array of scintillating tiles arranged on 1m x
1m plate of a prototype CALICE hadron calorimeter.

» Solid state detectors such as MPPCs and integrated electronics, more

¢ compact highly efficient calorimeters are now being used. Prototypes of

: “‘instrumented shielding” that could comprise a forward region muon
collider detector will be designed.
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'E‘ « Figure 3 (a): Examples of plastic scintillator tiles for use in calorimeters




¥ Prototype Large scale “ps” timing
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» 80 electronics channels

~+ » Transmission line
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1 tile: 20 cm by 20 cm
1 tray: 2 tiles by 3 tiles

I * Developed by LAPPD (Large Area Picosecond Photo-Detectors)
.« % collaboration, lead by the University of Chicago

. Al * See LAPPD presentations at this conference F
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H Tlmlng and particle 1D

Detector performance in ALICE at the LHC
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~ « The ability to distinguish electrons from muons can discriminate certain SUSY

"r events from background

Run in less than optimized mode for partial particle ID in forward cone
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Luminosity Monitoring at a Muon Collider
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f ' In principal, Muonh Collider‘bhysics reach can be very

' competitive with an ILC/CLIC...

Experiments at the e*e- colliders LEP and SLC have shown
that the calibration of the luminosity and beam energy
and polarization is crucial for the physics results obtained.

« At LEP the luminosity was measured with small angle silicon
based calorimeters, counting Bhabha events to a precision
of AL/L = 10-3, measured down to angles of about 30 mrad
with respect to the beam direction.

For muon collider, measuring the muon Bhabha cross section
down to small angles will be a challenge . This will require
a novel redesign of the forward shielding, and other
options for luminosity monitoring!




' Diamond and Gas Cerenkov
: ‘ detectors
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i1 ATLAS

« Diamond was chosen as the detector material
because of the fast signal collection and radiation
hardness required

. The sensors are required to {olerate doses up to
50Q kGy and in excess of 10 charged particles per
cm over the lifetime of the experiment

. Detectors plus electronics must have excellent time
resolution (~1 ns rise time, 2-3 ns pulswidth, 10 ns
baseline restoration in ATLAS required ~ 80 ps for \
MC) A
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Ending notes on these efforts...

. ‘ ~* Much progress toward Muon Colliders since the
/" 1996 Study.

« Background studies are tackling the primary
drawback to a MC vs. e+ e- machine.

The detector design and the MC lattice design are
critically dependent on each other.

Robust simulations will be critical — and the
methods are facilitating collaboration between
machine, detector and theorists (unique feature of :
the MC group!) =
Many promising technologies... but much more
Innovation needed.
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