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2.4. Heat Sink and Thermo-Electric Cooler (TEC)

A three-stage thermo-electric cooler (TEC) is used to cool
the CCD to the nominal operating temperature of −90◦C. The
cold-end of the TEC is directly connected to the substrate
of the CCD, which is mechanically supported by 3 Torlon
(polyamide-imide plastic) posts attached to the heat sink. The
heat is transferred through a heat pipe to a radiator panel on the
satellite surface, and is radiated away to space. The radiator
and the heat pipe are designed to cool the base below −40◦C
under the nominal TEC operating conditions. Figure 5 is a
photograph of the inside of base with the frame-store cover
shield removed. Since the TEC is placed under the CCD, and
the heat pipe is running under the base plate, these are not seen
in figure 5.

2.5. Radiation Shield

The performance of any CCD gradually degrades due to
radiation damage in orbit. For satellites in low-Earth orbit like
Suzaku, most of the damage is due to large fluxes of charged
particles in the South Atlantic Anomaly (SAA). The radia-
tion damage increases the dark current and the charge transfer
inefficiency (CTI). The XIS sensor body provides radiation
shielding around the CCD. We found from the ASCA SIS
experiment that radiation shielding of > 10 g cm−2 equivalent
Al thickness is required. The proton flux density at 2 MeV on
the CCD chip through 10gcm−2 of shielding is estimated to be
∼ 2× 103 protonscm−2 MeV−1 d−1 in the Suzaku orbit (same
as the ASCA orbit) at solar minimum.

3. On-Board Data Processing

3.1. XIS Electronics

The XIS control and processing electronics consist of
AE/TCE (analog electronics/TEC control electronics) and DE
(digital electronics). The DE is further divided into PPU (pixel
processing unit) and MPU (main processing unit). Two sets of
AE/TCE are installed in each of two boxes, respectively, called
AE/TCE01 and AE/TCE23. Similarly, 4 PPUs are housed
in pairs, and are designated PPU01 and PPU23, respectively.
AE/TCE01 and PPU01 jointly take care of XIS 0 and XIS 1,
while AE/TCE23 and PPU23 are for XIS 2 and XIS 3. One
unit of MPU is connected to all the AE/TCEs and PPUs.

The AE/TCE provides the CCD clock signals, controls the
CCD temperature, and processes the video signals from the
CCD to create the digital data. The clock signals are generated
in the AE with a step of 1/48 pixel cycle (∼ 0.5µs) according
a micro-code program, which is uploaded from the ground.
The pixel rate is fixed at 24.4µs pixel−1. Therefore one line,
consisting of 4 under-clocked pixels, 256 active pixels, and
16 over-clocked pixels, is read out in about 6.7 ms. The CCD
output is sampled with 16-bit precision, but only 12 bits are
sent to the PPU. The 12 bits are selected to cover the full energy
scale of $ 15 keV in the normal setting of the gain. The full
energy scale of $ 60 keV can also be selected in the low gain
mode.

The AE/TCE controls the TEC (thermo-electric cooler) to
generate a temperature difference of ∼ 50◦C relative to the
base, while keeping the CCD chip at −90◦C. The AE/TCE

Fig. 5. The CCD and heat sink assembly installed in the base. The
cover shield is removed in this picture.

can also supply reverse current to the TEC, to warm up the
CCD chip in orbit. The CCD temperature may be raised a few
tens of ◦C above that of the base. In practice, the requirement to
avoid excessive mechanical stresses due to differential thermal
expansion of the copper heat sink relative to the alumina CCD
substrate imposes an upper limit on CCD temperature in this
mode. For example, with the heat sink at a typical operating
temperature of −35◦C, we have adopted a maximum allow-
able CCD temperature of about + 15◦C. The CCD temperature
upper limit is higher at higher heat sink temperatures.

The PPU extracts a charge pattern characteristic of X-rays,
called an event, after applying various corrections to the digital
data supplied by the AE/TCE. Extracted event data are sent to
the MPU. Details of the event extraction process are described
in subsection 3.3. The PPU first stores the data from its
AE/TCE in a memory called the pixel RAM. In this process,
copied and dummy pixels1 are inserted in order to avoid a
gap in the event data at segment boundaries, to ensure proper
event extraction at segment boundaries and to enable identical
processing of all segments of the data. The raw data from
AE/TCE may include a pulse height (PH) offset from the true
zero level due to dark current, small light leakage through the
OBF, and/or an electric offset. Since the offsets depend on
the CCD position and time, offset corrections are also position
and time dependent. To reduce the computing power and time
required for such corrections, the offsets are divided into two
parts, dark-level and light-leak. The dark-level is the average
output from a pixel with no irradiation of X-rays or charged
particles. The dark-level is determined for individual pixels,
and is up-dated by command only after each SAA passage in
1 The data of each CCD segment are transferred through independent lines

from the AE/TCE to the PPU, and are processed in parallel by the same
processing scheme in the PPU. For a proper event extraction at the
segment boundary, the data in the two columns of the adjacent CCD
segments must be used. Therefore hard-wired logic is installed to “copy”
the two column data in the adjacent CCD segments to the proper locations
in the PPU pixel RAM. These are called as “copied pixels”. In the case
of outer boundaries of segments A and D, such “copied pixels” can not be
prepared. Instead, two columns of zero data are prepared in the PPU pixel
RAM. These are called “dummy pixels” in the PPU pixel RAM.
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can also supply reverse current to the TEC, to warm up the
CCD chip in orbit. The CCD temperature may be raised a few
tens of ◦C above that of the base. In practice, the requirement to
avoid excessive mechanical stresses due to differential thermal
expansion of the copper heat sink relative to the alumina CCD
substrate imposes an upper limit on CCD temperature in this
mode. For example, with the heat sink at a typical operating
temperature of −35◦C, we have adopted a maximum allow-
able CCD temperature of about + 15◦C. The CCD temperature
upper limit is higher at higher heat sink temperatures.

The PPU extracts a charge pattern characteristic of X-rays,
called an event, after applying various corrections to the digital
data supplied by the AE/TCE. Extracted event data are sent to
the MPU. Details of the event extraction process are described
in subsection 3.3. The PPU first stores the data from its
AE/TCE in a memory called the pixel RAM. In this process,
copied and dummy pixels1 are inserted in order to avoid a
gap in the event data at segment boundaries, to ensure proper
event extraction at segment boundaries and to enable identical
processing of all segments of the data. The raw data from
AE/TCE may include a pulse height (PH) offset from the true
zero level due to dark current, small light leakage through the
OBF, and/or an electric offset. Since the offsets depend on
the CCD position and time, offset corrections are also position
and time dependent. To reduce the computing power and time
required for such corrections, the offsets are divided into two
parts, dark-level and light-leak. The dark-level is the average
output from a pixel with no irradiation of X-rays or charged
particles. The dark-level is determined for individual pixels,
and is up-dated by command only after each SAA passage in
1 The data of each CCD segment are transferred through independent lines

from the AE/TCE to the PPU, and are processed in parallel by the same
processing scheme in the PPU. For a proper event extraction at the
segment boundary, the data in the two columns of the adjacent CCD
segments must be used. Therefore hard-wired logic is installed to “copy”
the two column data in the adjacent CCD segments to the proper locations
in the PPU pixel RAM. These are called as “copied pixels”. In the case
of outer boundaries of segments A and D, such “copied pixels” can not be
prepared. Instead, two columns of zero data are prepared in the PPU pixel
RAM. These are called “dummy pixels” in the PPU pixel RAM.
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 Concept of X-ray SOIPIX  

Monolithic pixel sensor by Silicon on Insulator (SOI) Tech
Si sensor + CMOS readout circuit with trigger
Many advantages over conventional hybrid CMOS sensor
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Prototype: XRPIX1
Confirmed the capabilities of X-ray imaging 
spectroscopy and the trigger function
Depletion layer of 140 µm 
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XRPIX1: First prototype
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32 x 32
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Ryu reported 
@IEEE-NSS2010 

30.6 µm□
pixel size
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CMOS Circuit of XRPIX1-FZ
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Experimental Setup
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X-ray Spectrum and Sensitivity
Reset all pixels to constant voltage
Wait for X-ray injection in 1 ms 
Read all pixels (1 sample/pixel)
Repeat the above step
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signal-time profile

1 Pixel Readout Method
Use only 1 pixel to redunoce readout noise and investigate 
the limit of the performance (cf. Prigozhin et al. 2009) 
Sample the signal of a particular pixel many times
Analyze in off-line and search X-ray hit point
Incident X-ray energy = Signal level - Base level
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3 x 3 Pixels Readout Method
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Spectrum of 3 x 3 Pixels
Use the event selection method 
(like CCDs)
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Spectrum of 3 x 3 Pixels
Use the event selection method 
(like CCDs)
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Depletion Depth
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full depletion !

Incident X-ray 
Cu (8 keV) + Mo (17 keV)

Attenuation Length
Cu -> 71 µm
Mo -> 678 µm

Consistent with calculated value
QE = 97% @8 keV, 32% @ 17 keV

XRPIX1-FZ
almost absorbed

partially absorbed

Detected counts ratio Mo/Cu  
∝ Depletion Depth

(compare to incident ratio of Mo/Cu 
obtained by CdTe detector)  

250 µm
Sensor layer

Preliminary !



Summary

We developed XRPIX1-FZ with high resistivity 
(~ 7 kΩcm) 

CMP treatment of backside reduce dark current
XRPIX1 has

-  Non-uniformity of gain ~ 1.0 %

-  Energy resolution ~ 260 eV FWHM @8 keV in 1 
pixel readout method

-  Full depletion of 250 µm
13


