

Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments

Alan G. Prosser Fermilab

For the Versatile Link Common Project

Outline

Overview of Components and Trends

Review of Test Hardware and Components

A Look at Emerging Optical Engines

Some Test Results

Future Directions and Acknowledgments

Versatile Link Common Project

Versatile Link: CERN-organized common project for ATLAS and CMS Goal: "Development of a general purpose optical link which can cover all envisioned transmission applications: a versatile link" @ data transfer rates of up to 5 Gbps.

Work Package 1.1 (Southern Methodist University)

Point to Point Architecture and System Engineering

Work Package 2.1 (CERN)

Front End Components (Versatile Transceiver)

Work Package 2.2 (Fermilab)

Back End Components (COTS, Off Detector Components)

Work Package 2.3 (Oxford University)

Passive Components

Source: "Versatile Link Status Report"

Jan Troska

CMS Tracker Upgrade Meeting

April 24, 2009

^{*}See TIPP 2011 Presentation Dr. Annie Xiang, "A Versatile Link for high speed radiation, resistant optical transmission in LHC upgrades"

Versatile Link Common Project

Front End Back End

Parallel Optics – Technology Evolution

Image Courtesy of Avago Technologies

Parallel Optics – Device Comparision

- Emerging Standards (100 GbE) Driven by Telecom and Storage
- Off the shelf and prototype devices evaluated
- High speed, parallel communications in multiple footprints
- For HEP: High Channel Count, Easier Cable Management Reduced Board Area (including connectors)

CXP Transceiver (12 channels TRx, 10 Gbps/channel)

SNAP12 Transmitter (12 channels, 2.7 Gbps/channel)

Parallel Optical Engine Transceiver (4 channels, 6.25 Gbps/channel) (Efficient PCB Applications, Lower Electromagnetic Noise)

SFP+ Single Channel
Transceiver
(10 Gbps)

Parallel Optics – Optical Engine Evaluation Hardware

Vendor Supplied Evaluation Board

Vendor Supplied Evaluation Board

Fermilab Designed Evaluation Board

Fiber Ribbon Breakout Cable

MTP Connector

Parallel Optics – Emerging OE Products

Parallel Optical Engine Tx/Rx (12 channels, 10 Gbps/channel)

Parallel Optical Engine Tx/Rx (12 channels, 10.3 Gbps/channel)

Parallel Optical Engine Tx/Rx (12 channels, 10 Gbps/channel)

Parallel Optical Engine TRx (12 channels, 10 Gbps/channel)

Parallel Optics – Optical Engine Mezzanine

Optical Test and Measurement

Digital Signal Analyzer (Eye Patterns, Jitter)

Variable Optical Attenuators (Receiver Sensitivity)

Labview VIs (Histogram Analysis)

FPGA Signal Integrity Kit (BERT, PRBS Generation)

Optical Test and Measurement

Transmitter Measurements	Target Value	Receiver Measurements	Target Value
Optical Modulation Amplitude (OMA) Transmit Eye Extinction Ratio Transmit Eye Opening Transmitter Rise Time Transmitter Fall Time Transmitter Total Jitter Transmitter Deterministic Jitter	3.2 dBm* 3.0 dB 60% of OMA 52 ps 52 ps 0.25 of UI 0.12 of UI	Receiver Sensitivity Receiver Total Jitter Receiver Deterministic Jitter	-11.1 dBm 0.34 of UI 0.14 of UI

Optical Transceiver Test Measurements

Industry Standard Measurements and Apparatus

Eye Diagram Measurements:

Optical Modulation Amplitude Extinction Ratio Rise/Fall Times **Jitter Analysis:**

Deterministic Jitter (including decomposition)
Random Jitter (Gaussian, unbounded)
Eye Opening @ 10⁻¹² BER

Parallel Optics Device Measurements

Transmitter Measurement

(each point is a different channel; each line is a different device)

Data Collected at: 5 Gbps

Parallel Optics Device Measurements

Data Collected at: 10 Gbps

Measurement	Norm	
OMA	-3.2 dBm*	
Rx Sensitivity	-11.1 dBm	
Ext. Ratio	3.0 dB	
Tx. Eye Opening	60% of OMA	
Tx Rise Time	52 ps	
Tx Fall Time	52 ps	
Tx Total Jitter	0.25 of UI	
Tx Deterministic Jitter	0.12 of UI	
Rx Total Jitter	0.34 of UI	
Rx Deterministic Jitter	0.14 of UI	

^{*} Calorimeter Grade Version

Future Directions

Continue to work with vendors on the testing of emerging products

Provide our Versatile Link collaborators with prototype test platforms

Develop per channel specifications for parallel devices for Versatile Link

Document test results and provide engineering support from lessons learned

Identify and recommend suitable multi-channel receiver modules for the Versatile Link

Acknowledgments

This work has benefitted greatly from the support of our Versatile Link colleagues at:

CERN

Oxford University

Southern Methodist University