

Demonstration and comparison of photomultiplier tubes operation at liquid Argon Temperature

Ettore Segreto LNGS (Italy) On behalf of the WArP Collaboration

Introduction

- Direct Dark Matter search in the form of WIMPs requires to detect very low nuclear recoil energies (few KeV).
- Liquid Argon based detectors reveal the recoil detecting the scintillation light following energy deposition.
- Light red-out is mainly performed by means of photomultiplier tubes (PMTs).
- A new type of PMT has been recently developed by Hamamatsu Photonics (Mod. R11065) which pushes the Quantum Efficiency up to 35% at liquid Argon temperature (87° K).
- Within the on-going R&D activity of the WArP Collaboration (WIMP Argon Program at LNGS, 2009-11), a first set of R11065 PMTs has been subject to a series of tests aiming at their characterization in reference working conditions
- We operated the PMTs immersed in the liquid and optically coupled to LAr cells of various size.
- A comparison of the R11065 Hamamatsu PMT with a former generation of cryogenic PMT produced by Electron Tubes Limited Mod. ETL D750 (currently in use with the WArP -100 detector) has been also carried out.

New high QE Hamamatsu PMT

PHOTOMULTIPLIER TUBE

TENTATIVE DATA SHEET

Sept. 2009

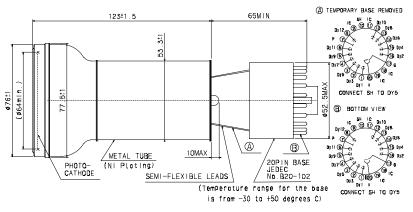
R11065

For Low Temperature Operation down to -186 deg. C Special Bialkali Photocathode (Bialkali LT), Low Radioactivity 76 mm (3 Inch) Diameter, 12-stage, Head-on Type, Synthetic Silic a

General

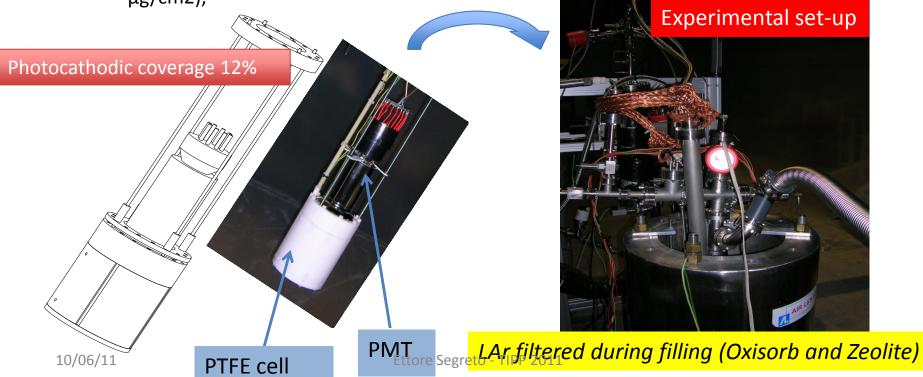
	Parameter	Description / Value	Unit
Spectral response		160 to 650	nm
Wavelength of Maximum Response		420	nm
Window material		Synthetic silica	-
Photocathode	Material	Bialkali	-
Photocathode	Minimum Effective Area	64	mm dia.
Duniale	Structure	Box & Linear-focused	-
Dynode	Number of Stages	12	-
Suitable Socket		E678-20A (supplied)	-
Operating Ambient Temperature		-186 to +50	deg. C
Storage Temperature		-186 to +50	deg. C

R11065 TEST DATA

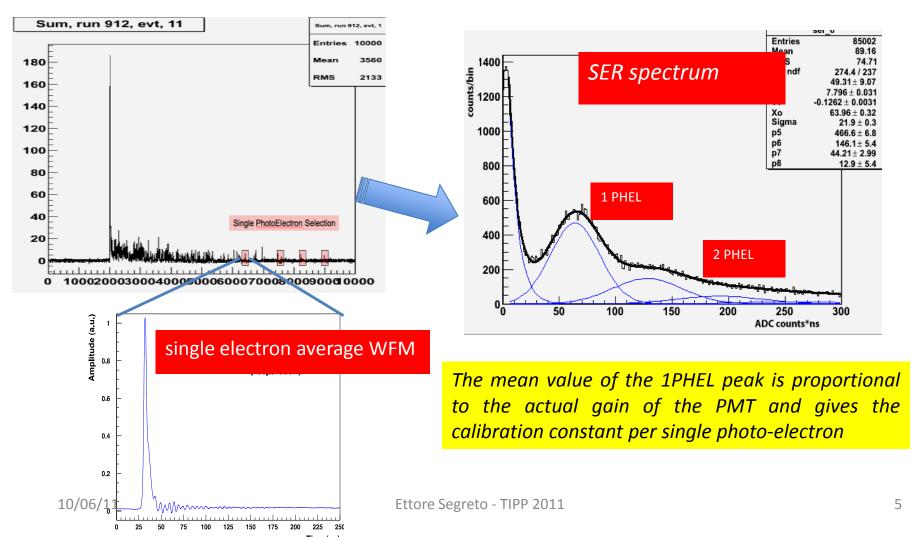

January 12, 2010

	SERIAL NUMBER	SK	SKB	SP	IDB	QE
		[uA/lm]		[A/Im]	[nA]	[%]
				1500 V	1500V	420 nm
1	ZK4998	124.0	14.70	783	44.0	33.8
2	ZK4999	157.0	15.00	1040	56.0	35.4
3	ZK5001	136.0	14.50	1100	27.0	34.6
1	ZK5002	138.0	14.00	1010	15.0	33.9
5	ZK5006	137.0	13.10	1050	12.0	31.0
6	ZK5172	163.0	14.60	1170	34.0	33.3
7	ZK5173	143.0	14.10	808	32.0	32.5
3	ZK5175	114.0	12.00	777	12.0	29.8
9	ZK5176	110.0	11.20	897	30.0	27.8
	10/06	o/11				Ettore Segre

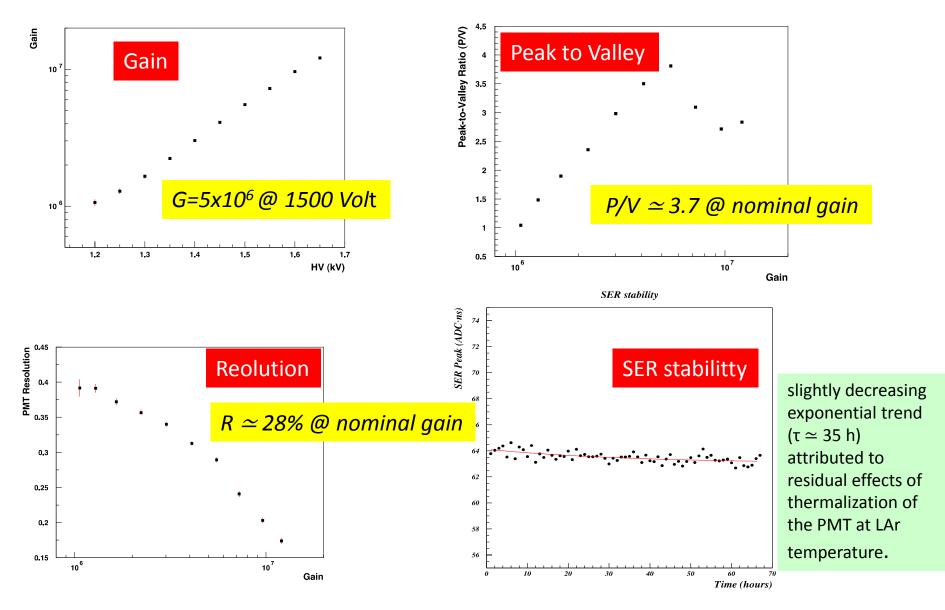
Box&Linear-focused 12-stages PMT •Synthetic Silica 3" window (cut-off around 160 nm)


- •Working temperature down to -186° C
- •QE ≥ 30% @ 420 nm

•Bialkali cathode without Pt underlayer High Collection Efficiency of photoelectrons at first dynode (above 95% with ΔV_{K-D1} >300Volt) •Voltage divider custom made on a G10 printed circuit (according to Hamamatsu specifications)

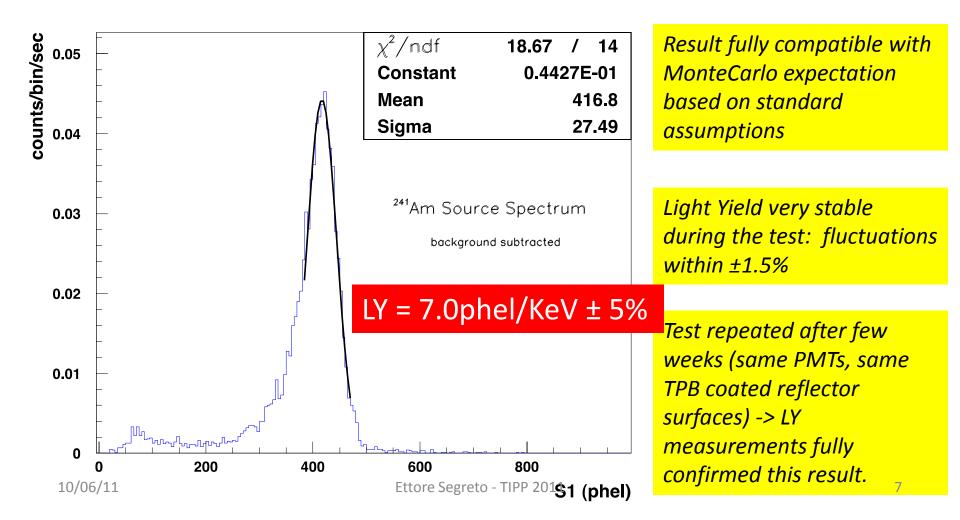

Single PMT test

- •PTFE cell containing 0.7kg of LAr (cylinder shaped h=9cm Φ =8.4cm) observed by one 3" R11065 PMT.
- •Scintillation photons of LAr are in the VUV range (around 127 nm) and with two (main) different time constants ($\tau_s \simeq 5$ ns for the fast component and and $\tau_T \simeq 1.3 \ \mu s$ for the slow component).
- •Internal surfaces of the cell covered with reflective foils coated by a wavelength shifter
- -> TPB (peak emission 440 nm);

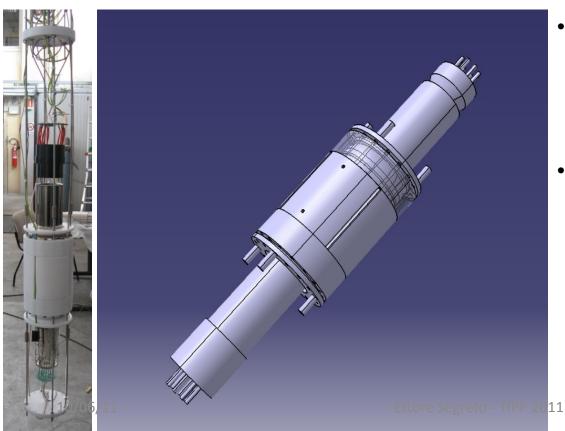


DAQ and calibration

- PMT anode current transmitted to a fast Waveform Recorder (Acqiris, DP235 Dual-Channel PCI Digitizer Card2, 1 GS/s, 8 bit dynamic range) => signal waveform recorded with 1 nsec sampling time over a full record length of 15 μs;
- Detector exposed to a ²⁴¹Am source with monochromatic γ -emission at 59.54 keV;
- For each source run a Single Photo-electron Response (SER) spectrum is computed.

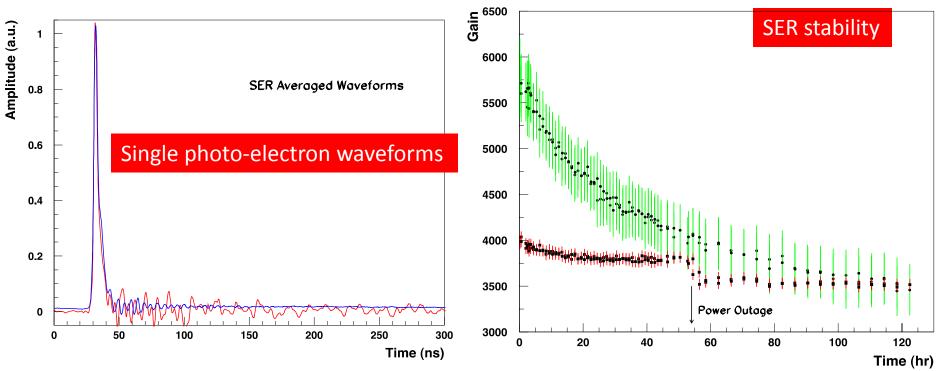


Gain, Peak to Valley and Resolution


Light Yield measurement

- LY measurement performed by exposing the detector to the ²⁴¹Am monochromatic γ-source (59.54 keV);
- Pulse amplitude spectrum in photo-electrons obtained by waveform integration and application of the calibration factor determined by SER fit;

Two-PMTs test: ETL vs HAMAMATSU comparison


- A second test (mid 2010) for a direct comparative test of two types of PMTs: 3" HQE Hamamatsu R11065 (the same used in the previous test) and 3" ETL - D750 (pre-production series of the PMT in the WArP -100 experiment);
- LAr volume viewed simultaneously by the two PMT => comparison of the light outputs independent from the actual detector conditions;
- A PTFE cell, about 0.4 It of internal volume (h=8.0 cm and φ=7.6 cm), lined with a TPB coated reflector layer on the lateral;

- Signals from each PMT were directly recorded by the 8-bit Fast Waveform 13Digitizer Acqiris board (DP235) at 1 GHz over a 15µs time interval (as for the single PMT test);
- Data treatment and the off-line analysis code -> same as in the single PMT test.

Single Electron Response of the two PMTs

- ✓ Very similar pulse shapes for single electron;
- ✓ The gain of the ETL PMT showed a steeper decreasing trend.
- The gain of the Hamamatsu PMT has a slight decrease over the first day after activation and then stabilized to a constant value.
 * 10³

	Peak-to-Valley ratio	SER resolution	
Hamamatsu R11065	3.5	32~%	
ETL D750 (pre-series)	1.9	50~%	
	Ett	ore Segreto - TIPP 2011	

Light Yield measurement

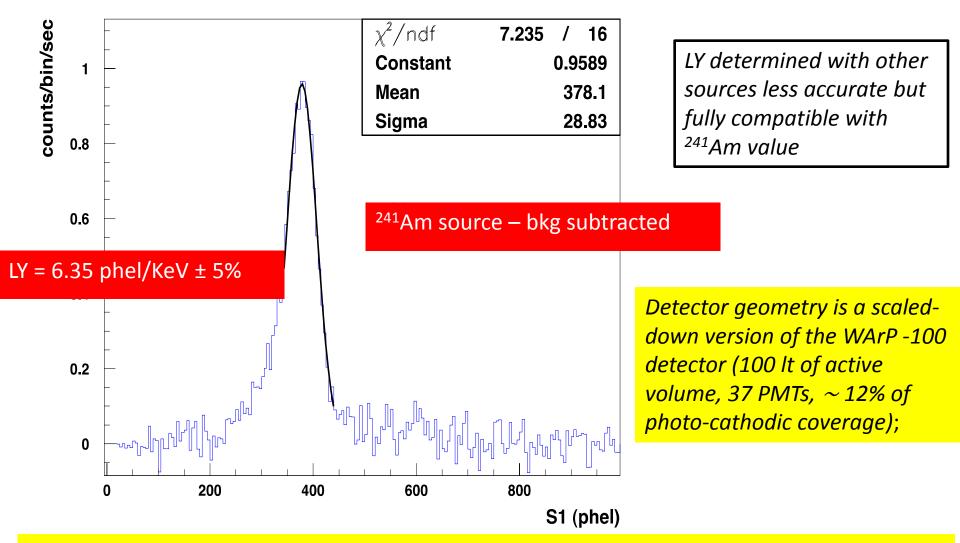
 \checkmark LYs determined by exposure to the ²⁴¹Am gamma- source (59.54 keV)

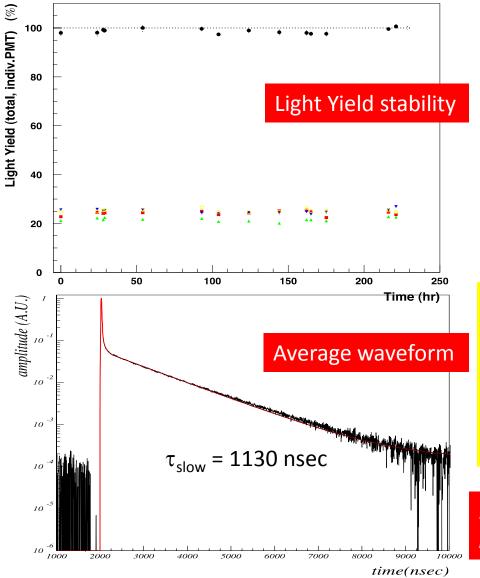
The Hamamatsu-to-ETL ratio of LY found in the 3 : 1 range

the ratio of the QE counts/bin/sec 0.04 0.03 Light Output (phel) χ^2/ndf 28.48 200 1 23 **P1** 0.4126E-01 175 **P2** 52.64 150 **P3** 12.51 125 LYs stable during the test ETL PMT - ²⁴¹Am Spectrum 100 0.02 background subtracted 75 ╶┼[╋]╶┽┼┿┽┽_{╋┿╋}╪╋╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧ 0.01 50 peak @ 52 phel 25 0 25 50 75 175 200 100 125 150 0 20 40 140 n 60 80 100 120 S1 (phel) Time (hr) 0.05 counts/bin/sec χ^2/ndf 31,28 / 17 Light Yields Ratio (Hamamatsu/ETL) HMMTS/ETL **P1** 0.4011E-01 0.04 5 **P2** 172.3 **P3** 30.03 0.03 4 1111111111111111111111111 Hamamatsu PMT – ²⁴¹Am Spectrum з 0.02 background subtracted 2 0.01 peak @ 172 phel 1 0 600 700 100 200 300 500 0 400 0 S1 (phel) 20 40 60 80 100 120 140 Time (hr)

consistent with

Four-PMTs test


- The scaling-up capability of the implemented technology tested with a detector about ten times bigger than the one with one PMT;
- The WArP 2.3I prototype used for this test (4.3 liters internal volume)-> equipped with 4 HQE Hamamatsu PMTs R11065 (photo-cathodic coverage ~ 12 %);
- Internal surfaces covered with VIKUITI ESR reflector layer + TPB (density about 300 µg/cm²)
- PMT windows naked (no wavelength-shifter);
- 4 PMT anode signals directly digitized by two Acqiris Boards (Mod. U 1080 A, 2-chs. each with 8-bit dynamic range and 1GS/s) at 1 ns sampling time over 15 μs time interval;


- All internal component baked @ 80°C;
- Detector housed in a low-radioactivity stainless steel vessel deployed in a LAr open bath;
- Detector completely filled with LAr -> PMTs' bases immersed;
- LAr filling through an in-line filter (Oxygen reactant and molecular sieve);
- No electric field;
- PMTs equalized @ 3x10⁶ gain (around 1400 Volt).

Data Analysis and Results (I)

 \checkmark Detector exposed to ²⁴¹Am, ¹³³Ba, ⁵⁷Co and ¹³⁷Cs sources

Data Analysis and Results (II)

- LY stable within 2%;
- One PMT has a systematic lower light yield

 > not yet understood (PMTs have almost the same Quantum Efficiency);
- With four PMTs working in the same way
 -> LY ~ 6.6 phel/keV

- Slope of the slow scintillation component: 1130 ns (1300 nsec for clean Argon). This reduces the light yield of about 10%.
- Direct measurement with mass spectrometer showed the presence of ~ 1 ppm of N₂ (not captured by our filters);

In case of clean Argon the LY would have been in the range of 7 phel/KeV.

Conclusions

- A new PMT type with enhanced Quantum Efficiency photo- cathode and operating at LAr temperature has been developed by Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%. PMT's of this type have been extensively tested along with the R&D program of the WArP Collaboration;
- The main working parameters of this PMT were measured at LAr temperature and its great performances have been clearly demonstrated;
- Liquid Argon detectors with HQE photo-cathodic coverage in the 12% range can achieve a light yield around 7 phel/keV (at null electric field), sufficient for detection of events down to few keV of energy deposition -> suited for direct Dark Matter searches with LAr-based experiments.