

The LHCb Online System Design, Implementation, Performance, Plans

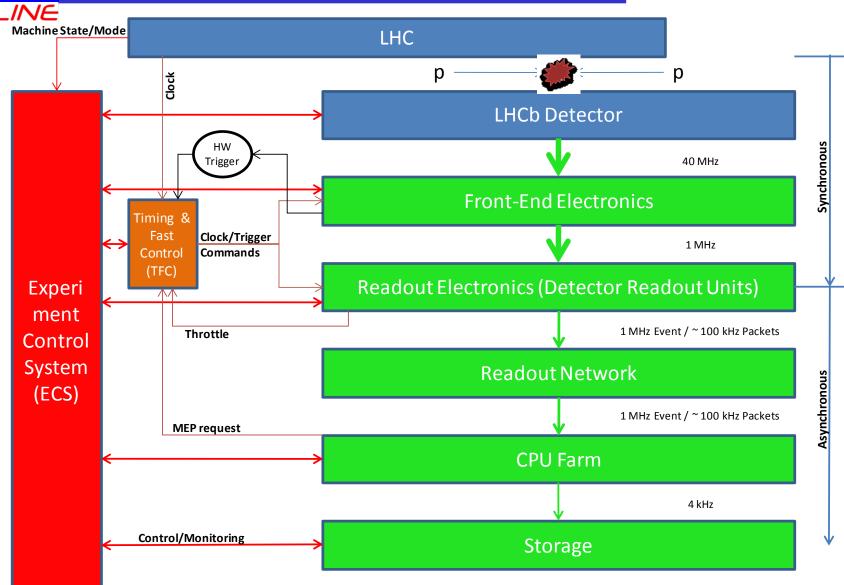
Presentation at the 2nd TIPP Conference Chicago, 9 June 2011 Beat Jost Cern

The LHCb Detector

Single-arm spectrometer composed of Vertex Locator, Tracking System, I detectors, Calorimeter em (Preshower, ECAL, L) and Muon system to ore the strongly ard peaked bb uction at the LHC

System Requirements/Boundary Conditions

- ☐ Bunch-Crossing rate: 40 MHz
- □ Luminosity in LHCb: ~0.2 Hz/nb
- ☐ Interaction rate in LHCb: ~15 MHz
- ☐ Hardware Trigger accept Rate: 1 MHz (max)
 - > Given by readout time from detector electronics to readout electronics (36 clock cycles of 25 ns)
- □ Detector channels: ~1 Million
- □ Event Size (after Zero Suppression): ~60kB
 - >> Original design value ~35 kB
- ☐ High-Level Trigger output rate (rate to tape):
 - > 3 kHz physics + 1 kHz other
 - >> Originally: 200 Hz

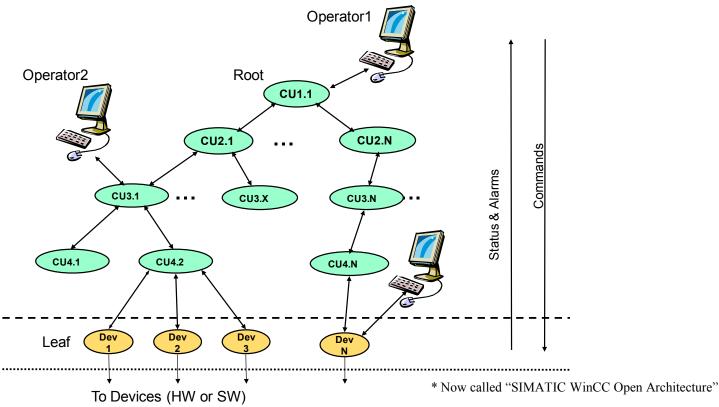


System Design Criteria

- ☐ Simplicity
 - >> Simple protocols, commercial solutions wherever possible
- Scalability
 - > Capable of absorbing new and changing requirements
- ☐ Uniformity
 - > Common solution for common problem
 - > Identical behaviour as early as possible in the readout
 - >> As few technologies as possible
- Operability
 - > Operate the experiments with minimal number of people on shift
- Partitionability
 - Ability to operate disjoint parts of the detector independently and asynchronously
- ☐ Robustness
 - >> Strict separation of control and data path
 - > No Buses, only point-point connections

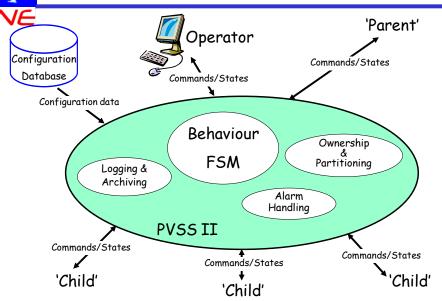
System Architecture

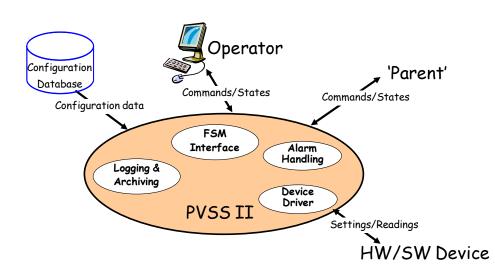
TIPP 2, Chicago, 9 June 2011



- ☐ The entire Online system is decomposed into three major Subsystems
 - > Experiment Control System (formerly Slow control)
 - → Control, Configuration and Monitoring of the entire Online system
 - → Includes
 - Classical slow control (Temperatures, Low/High Voltages, gases,...)
 - Readout Hardware
 - Readout software
 - Trigger software
 - Run Control
 - > Timing And Fast Control System (TFC)
 - → Generate and distribute all beam-synchronous information to the readout layer and the front-end electronics, such as
 - Clock
 - Trigger decisions
 - Beam-synchronous commands, e.g. resets, calibration commands
 - Data Flow system (aka. DAQ system)
 - → Data transfer from Front-end electronics to storage
 - → Provide infrastructure for the High-Level Trigger software

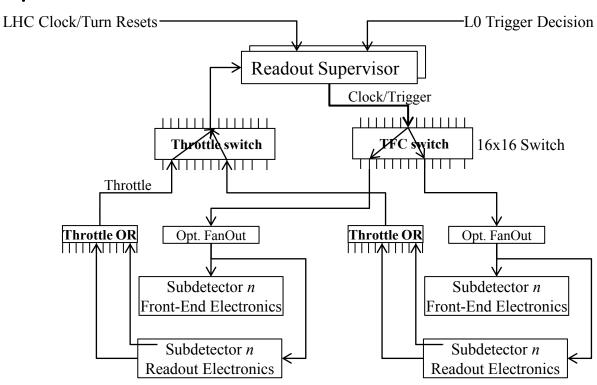
Experiment Control System


- Based on commercial control framework (ETM PVSS-II*)
- Hierarchical design
 - > Control Units -> Control Units -> ... -> Device Units
- ☐ Highly distributed across some 150 Control PCs


TIPP 2, Chicago, 9 June 2011 Beat Jost, Cern 7

Control and Device Units

- Control Units implement behaviour
- Based on PVSS-II and SMI++ Finite State Machine tool and DIM communication



- □ Device Units control HW/SW devices via commercial (OPC servers) or in-house software drivers.
- ☐ Interfaces to the FSM software providing state information

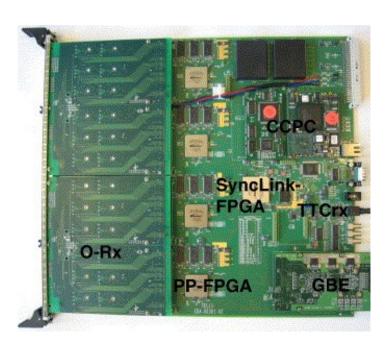
Timing and Fast Control

- ☐ Interface between the LHCb trigger system, the LHC machine and the readout electronics
- ☐ (simplified) Architecture

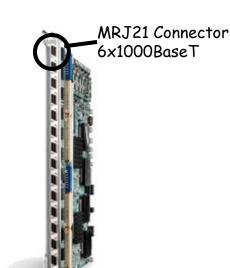
Timing and Fast Control

- □ Readout Supervisor (RS) central component of the subsystem.
 - > Custom board based on FPGAs
 - > Handles trigger and clock inputs and forwards them towards readout electronics
 - > Ensures buffer overflow protection (Rate control)
 - → Emulation of front-end electronics behaviour (synchronous)
 - → Obeying throttle signal (asynchronous)
- ☐ Signal transmission based on Cern's TTC (Timing and Trigger Control) optical transmission system.
- □ Partitioning support through the TFC and throttle switches
 - > Guide the signals from the RS towards the detector electronics and the throttle signals back to the same RS
 - > Allows for up to 16 parallel activities

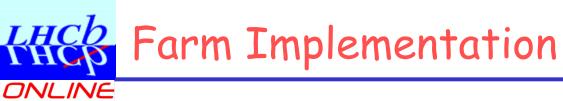
Data Acquisition System

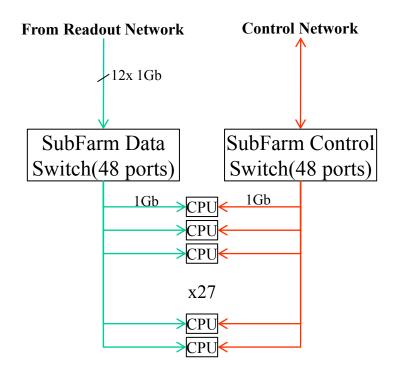

- I System Components
 - Detector Readout
 Units
 - ➤ Readout Network
 → GbFthernet
 - > CPU farm
 - >> Storage subsystem

Detector Readout Units (aka Tell1)


- Custom board based on FPGA
- ☐ Common board for (almost) all subdetectors
- Functionality
 - > Receive data from front-End electronics
 - → Alternatively
 - Up to 24 optical GOL links (24x1.28 Gb/s = 30 Gb/s)
 - Up to 64 electrical analog links (64*10b*40 MHz = 25 Gb/s)
 - > Detector specific processing of the data
 - → Zero suppression, clustering etc..
 - → Data formatting
 - Output data to destination transmitted by TFC system
 - → 4 GbEthernet output ports

- ☐ Based on Gb Ethernet
 - > Low price, high performance, mature, scalable, large speed range, longevity
- □ Required Throughput >80 GB/s
- □ >800 input links
- → >600 output links
- □ Large buffers (256 MB/48 ports)
- ☐ Implementation
 - > 2 Force10 E1200 chassis each containing
 - → 10 90-port copper GbEthernet ports





- ☐ Provides the infrastructure for the high-level trigger
- □ Required CPU power obviously depends on time per event of the triggering algorithm
 - > Currently ~20 ms per event
 - > @ 1MHz input rate ~20000 copies of the trigger task needed

 → currently 1350 Processing elements (boxes)
- ☐ Two types of Processors
 - > 550 boxes dual Intel Harpertown (8 physical Cores)
 - > 800 boxes dual Intel Westmere (12 physical Cores)
- ☐ Organized in 50 subfarms (racks)

- □ 50 Subfarms (Racks) with identical layout
- ☐ Architecture

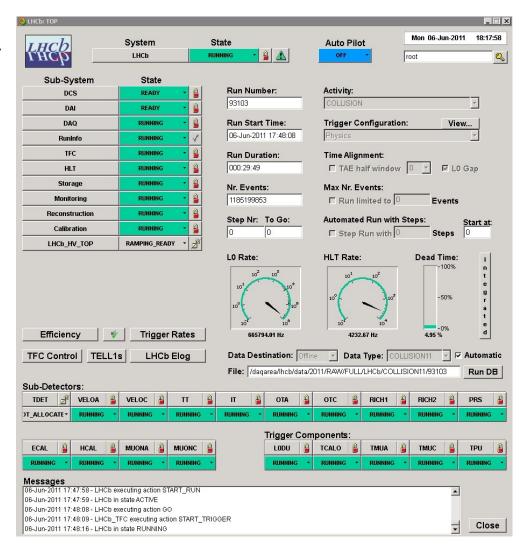
TIPP 2, Chicago, 9 June 2011 Beat Jost, Cern 15

- □ Each DRU has either two or four links into the readout network
 ➤ Equal number into each switch chassis
- ☐ From each switch chassis there are 6 links into each subfarm
- ☐ The CPU farm consists (today) of 1350 boxes (14000 physical cores)
- 365 Detector readout Units
- 1560 GbEthernet links in/out of main DAQ switches
- □ 1350 GbEthernet links into the farm CPUs
- □ ~1000 GbEthernet links for controls network

Data Transfer Protocols

- ☐ In general data are **pushed** through the system without acknowledgment ("fire and forget")
 - >> Simple data sources
 - → Little/no buffering needed
 - → No protocol handling
 - > Assumes only very few packets are lost on the way...
- ☐ Upon LO-trigger "Yes" the detector front-end electronics push the data through the GOL links towards the DRUs
- ☐ The DRUs do all the necessary processing and push the data towards the CPU farm
 - > Events (triggers) are packed into Multi-Event Packets (MEP). The packing factor is configurable and ~10
 - → Reduction of the transport overheads (Ethernet and IP headers)
 - The data format through the readout network is raw IP packets
 - > The destination (Farm node) is assigned by the RS and conveyed through the TFC network to each DRU.

Rate Limitation/Overload protection


Reasons for overload

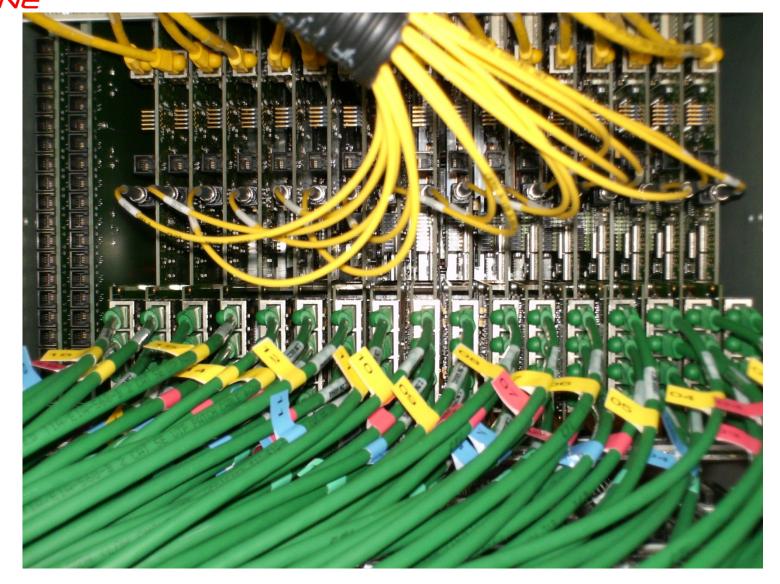
- > The front-end electronics has a limited de-randomizing buffer of 16 events. At a readout speed of 900 ns/event this buffer could overflow
- >> At this level the system is completely synchronous to the (LHC) clock
 - → Thus the Readout Supervisor can predict when the buffer would be overfilled → conversion of trigger "Yes" to "No"
- > The output buffer of the DRUs could fill up because of to high data rate
 - → System at this level is asynchronous
 - → DRUs assert throttle signal towards the RS to stop data from flowing in
- > The CPU farm can be busy
 - → Each farm node signals its readiness to receive data to the RS with a MEP request packet.
 - → RS will throttle trigger when there are no open MEP requests

TIPP 2, Chicago, 9 June 2011 Beat Jost, Cern

- □ The experiment and the online system is operated using point-and-click panels, based on the PVSS toolkit
- □ Behaviour and sequencing is achieved using the SMI++ state management Toolkit
 - > Many automatic actions
 - → Recovering dead HLT tasks
 - → Raising/lowering HV depending on LHC state
 - Allows operating the entire detector with 2 people on shift



- ☐ The system is currently operated at 660kHz trigger rate
- □ Event size is ~55kB (design 34 kB)
- Data rate through readout network into the farm
 ~36 GB/s
- ☐ HLT output Rate (rate to tape) ~40 kHz (design 200 Hz)
- □ Dead-Time (due to rate limiting) ~5% (mainly due to nonconformity of Front-End Electronics)


Readout Network Cabling

S DRU Cabling

- □ Eliminate the hardware trigger
 - > Aim is to improve trigger efficiency, mainly hadron trigger
 - > Readout full detector at bunch-crossing rate, i.e. 40 MHz
 - >> Perform event selection in software in the CPU farm
- ☐ Consequences
 - > New detector front-end electronics
 - >> Zero-suppression at front-end electronics
 - >> 40-fold increase in data rate
 - > ~40-fold increase in CPU power
 - > New TFC system, same philosophy
- □ Strategy
 - > Replace GbEthernet with 10Gb technology (prob. Ethernet)
 - > replace GOL with GBT link (~x3 in bandwidth)
 - > Replace CPU farm with new generation processors \times ~4
- ☐ Timescale: ~2016/7, or so...