A correlation-based timing calibration and diagnostic technique for fast digitizing ASICs

Kurtis NishimuraAndres Romero-WolfUniversity of HawaiiJet Propulsion Laboratory(for the LAPPD Electronics Group)

Technology and Instrumentation in Particle Physics, Chicago June 11, 2011

Waveform Sampling ASICs

- Waveform sampling ASICs are increasingly desirable in detector systems:
 - High channel density
 - Low cost / channel for production quantities
 - Customized to application, e.g.,
 - Sampling rate
 - Front-end gain
 - Buffer depth

Waveform Sampling ASICs

• Already in use in many experiments...

Oscilloscope on a chip!

 Waveform sampling/digitizing ASICs are just like an oscilloscope!

...right?

Oscilloscope on a chip?

• Modified approximation:

Corrections required*:

- 1. Voltage conversion:
 - Convert ADC counts to voltage.
- 2. Pedestal correction:
 - Remove cell-to-cell fixed DC patterns.
- 3. Time base correction:
 - Keep overall sampling rate constant (or correct for drift).
 - Correct for cell-to-cell variations in sampling rate.

*Some much simpler than others, and not all are required for every chip or application... some extra may be required for some applications.

The PSEC3 ASIC

Start with voltage and pedestal

calibrations already applied.

Focus: timing calibration.

*See E. Oberla's slides (Fri.), "A 4-Channel Waveform Sampling ASIC using 130nm CMOS technology" (Front-end Electronics)

250

sample cell

Time Base Corrections

Required calibrations / corrections:

• Overall time base drift:

☑ On PSEC3, overall sampling rate is locked by DLL.

- Still needed:
 - □ Measurement of the sampling rate.
 - \Box Calibration of individual time delays between sample cells ($\Delta t_{i,i+1}$).
- Sine wave inputs of known frequency are a powerful tool!

Calibration With Sine Waves

Possible strategies:

- Use zero crossings between sample cells.
 - Count zero crossing occupancies between samples.
 - Use sin(x) ≈ x near zero crossings.
- Fit to sine wave inputs:
 - Fit for amplitude, input phase, Δt between sample cells.

Potential drawbacks:

- Use zero crossings between sample cells.
 - Zero crossings are sparse, most data is not used.
 - Gives relative timing intervals. Need another procedure to get an absolute calibration.
 - Pedestals offsets cause issues.

- Fit to sine wave inputs:

- Global fits have many free parameters. Convergence is challenging.
- Unknown phases are nuisance parameters in fit.

Timing Calibration w/ Correlations

• Plot correlations between pairs of samples:

- To determine Δt_{ij} , plot $V_i - V_j$ versus $V_i + V_j$

Input signals given by: $V_i = A \sin(\omega t_i + \phi)$ $V_i = A \sin(\omega t_i + \phi)$

> For any given event, phase is unknown (but common). This is a nuisance for techniques that rely on fitting sine waves.

 i and j can be adjacent (or not), but with no extra information on timing intervals, cycle ambiguities exist if > 1 period apart.

TIPP - 10 June 2011

Timing Calibration w/ Correlations

• Plot correlations between pairs of samples:

- To determine Δt_{ij} , plot $V_i - V_j$ versus $V_i + V_j$

 i and j can be adjacent (or not), but with no extra information on timing intervals, cycle ambiguities exist if > 1 period apart.

TIPP - 10 June 2011

Timing Calibration w/ Correlations

<u>Ellipse features</u>:
1) Different ∆t (for known sampling frequency) give different major/minor radii.
2) Noise makes ellipse "fuzzy"
3) Nonzero pedestals shift origin
4) Difference in gain between two cells causes a rotation.

 → We have written an ellipse fitter to perform this method.
 → Even without fitting, it provides nice qualitative check on results.

• Procedure first tested on fast scope data...

Validation w/ Scope Data (TDS6804B)

→ All fits very well behaved.

Calculated Δt values for TDS6804B

(Using 2000 events)

Oscilloscope timing intervals

w/ scope set to 5 GSa/s:

 Δ t = 200.6 ps $\sigma_{\Delta t}$ = 1.8 ps

Excellent resolution even with a modest dataset.

Next try w/ PSEC3...

TDS6804B Datasheet

Aperture uncertainty, typical

Short term: ≤1.5 ps rms, records having duration ≤100 ms ≤800 fs rms, records having duration ≤10 μs Long term:

≤15 parts per trillion rms, records having duration

≤1 minute

Qualitative Results with PSEC3

Immediate visual feedback:

(Above) Data with 120 MHz input signal, obvious gain difference (rotation) along array (see Eric Oberla's PSEC3 talk).

(Right) Data with 100 MHz input signal, two sampling rates seen. Quickly identified a subset of events where sampling rate slipped.

Example Fit w/ PSEC3 Data

- Fits are well behaved, converge nicely.
- An obvious place to improve: outlier removal.

Fit Validation & Results

Use a small independent dataset, fit again w/ Δ t values fixed • and the input frequency floating.

Nishimura - Timing Calibration

PSEC3 with Stripline PMT

 PSEC3 is designed for Large Area Picosecond Photo-Detector (LAPPD) project (<u>http://psec.uchicago.edu</u>)

 Planacon MCP-PMT w/ 25 μm pore and prototype transmission line PCB readout.

- Time resolution along a strip directly impacts position resolution.
- → How well can we do with PSEC3?

Stripline MCP + PSEC3 Setup

- Use constant fraction technique to determine pulse time.
- Measure $t_{left} t_{right}$ with nominal and calibrated Δt values.

Stripline PMT Resolutions

- Resolution improves from $\sigma_t \approx 16$ ps to $\sigma_t \approx 13$ ps.
 - Resolution w/ 20 GSa/s scope: ~10 ps.
 - The procedure is still being refined and cross-checked.

Summary & Conclusions

- We propose a new technique for timing calibration of waveform sampling ASICs based on correlated sample values.
- Avoids some problems, adds some features:

- Converges with relatively small data sets.
- Includes terms to allow for nonzero pedestals.
- Automatically provides absolute time calibration.
- Immediate visual feedback on data quality.
- Validated w/ PSEC3 ASIC and oscilloscope data, and we are continuing to refine and add functionality.