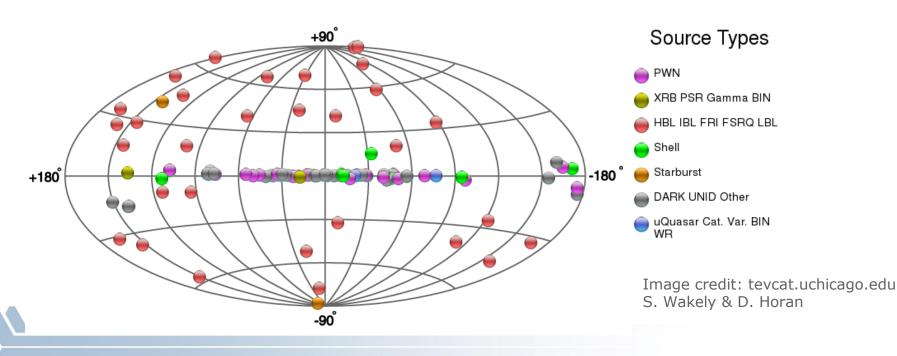


UPGRADE PLANS FOR VERITAS

Ben Zitzer* for the VERITAS Collaboration *Argonne National Laboratory


OUTLINE

- VHE (Very High Energy) Astrophysics (E > 10^{11} eV)
- Atmospheric Cherenkov Technique
- Introduction to VERITAS
- VERITAS Upgrade
 - FPGA Pattern Trigger
 - Higher Quantum Efficiency (QE) PMTs
- Upgrade schedule

VHE Astrophysics in 2011

- Over 100 Sources now!
 - Only a handful a decade ago
- Most detections from Atmospheric Cherenkov Telescopes
 VERITAS, HESS, MAGIC
- Source types:
 - Galactic (PWN/SNR, Binaries, 1 Pulsar)
 - Extragalactic (Mostly Blazars)
 - Unidentified

• Constraining Limits indirect of Dark Matter annihilation, EBL absorption

Atmospheric Cherenkov Technique

- Primaries (Gammas + Cosmic rays) create showers of secondary particles
- Creates shower in upper atmosphere
- Secondary pairs emit Cherenkov radiation
- Large light pool area: $A_{eff} \sim 10^5 m^2$
- Shower imaged in multi-PMT Cameras at telescope focus

10 km 10 km

Image credit: Bethany Theiling

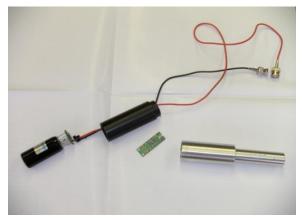
 Images of gammas are different from those of charged cosmic rays

Image credit: Glenn Sembroski

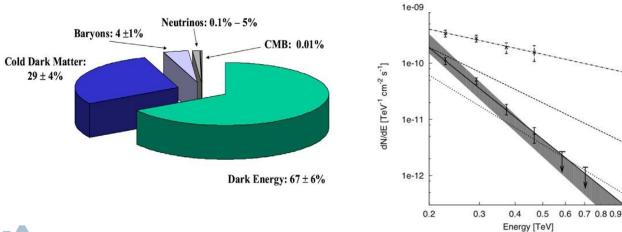
VERITAS

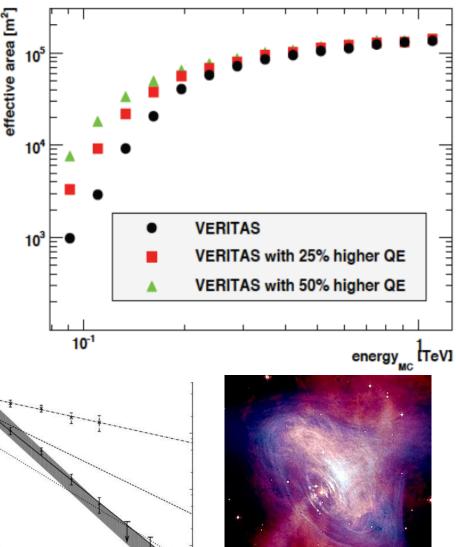
- Very Energetic Radiation Imaging Telescope Array System
- Four Telescope array located south of Tucson AZ
 Full array operations since Fall 2007
- ~1200 hrs observation/year, 200 hrs/year in low moonlight
- International Collaboration (US, Canadian, Irish, UK, German)
 - ~95 Collaborators at 20 institutions

Hardware and Performance

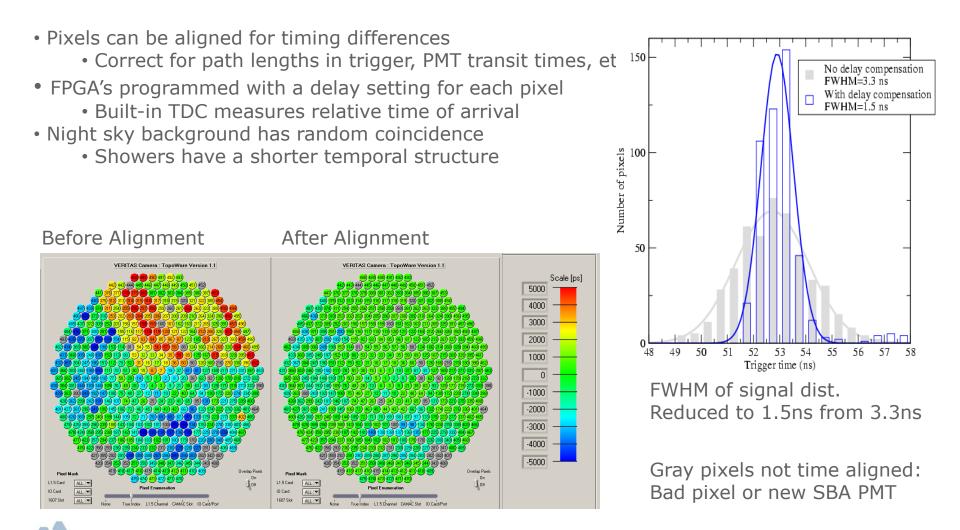

- Existing Hardware:
 - 350 mirrors/telescope, 110m² area
 - 499 PMT Camera
 - 500 Ms/s FADC channel on each pixel
 - Three level trigger system:
 - CFD on each pixel (L1, ~MHz/pixel)
 - Pattern Trigger (L2, ~kHz/telescope)
 - Array Trigger (L3, ~200 Hz for array)
- Performance:
 - Energy Range: 100 GeV to 30 TeV
 - Energy Resolution: 15-25%
 - Angular Resolution: $R_{68\%} < 0.1^{\circ}$
 - Pointing Accuracy: Error < 50 arcsec
 - 3.5° Field of View
 - Sensitivity: 1% Crab Flux in ~25 hrs

2009-2012 VERITAS Upgrade


- Move of Telescope 1 (Complete)
 - Optimal baseline between telescopes
 - 1% Crab Sensitivity in ~25hrs down from ~48hrs
- Higher QE PMT Cameras
 - Super Bialkali (SBA) photo cathodes
 - ~40% increase in photon collection efficiency
 - Reduce Trigger and detection threshold
- Optical Monitor/Intensity Interferometer
- Communication (Fiber Optic) Network Upgrade
- FPGA Based Pattern L2 Trigger
 - Faster, drop in replacement of existing trigger
 - Narrow coincidence gate from 8-9ns to 3ns
 - Better timing alignment between pixels
 - Designed to reduce night sky coincidence rate
 - Hardware for future Topological trigger Reduce Cosmic rays
 - Added flexibility during Observing/Calibration

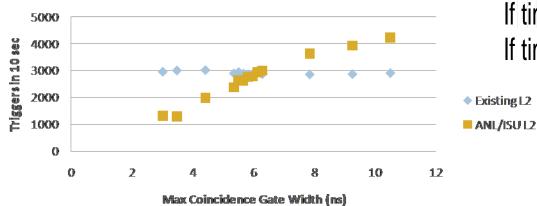


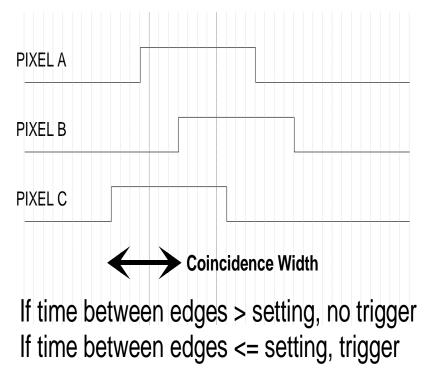
Upgrade Benefits

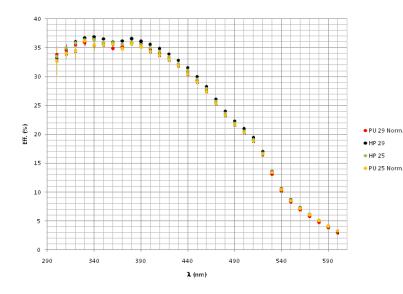

- Increased Sensitivity
 - Effectively more observing time
 - 1% Crab source in 16-20hrs
 - ~25 hrs currently
- Lower detector threshold
 - 60-70 GeV post-upgrade
 - NSB events dominate at low E
 - Physics motivations:
 - Tighter DM limits at low E
 - EBL Blazars density and evolution
 - Pulsar spectral cutoff ~GeV

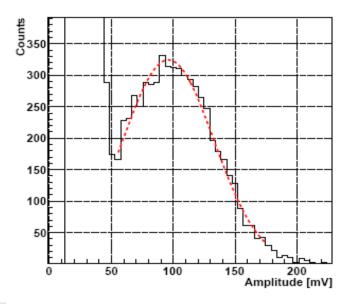
SAMSTICKCIASUU, Meximi et al.

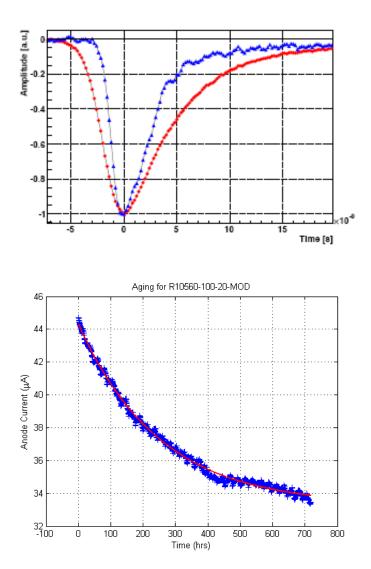
L2 - Pixel Time Alignment




L2 - Reduction of NSB


- Trigger is programmable to require leading edges down to 3ns
- Existing L2 equivalent is 6ns
- Optimize Coincidence gate to minimize NSB


PMT Upgrade


- Currently using Photonis XP2970
 15-20% QE
 Hammamatsu R10560-100-20mod
 SBA, 1 inch diameter
 - ~40% QE (plot on left)
- UV glass entrance window
- Eight stages

- Separated from pedestal
- Gain @ HV of 1100V is 2x10⁵

Other PMT Measurements

- Pulse shape
 - Blue is Hammamatsu R10560
 - Red is Photonis XP2970
 - Peaks normalized to each other
- Narrow peak aids discrimination of Cherenkov Pulses

- Aging PMT in dark box with HV on
 - High Current over long period
 - Normal operations $\sim 3\mu A$
 - Anode Current ~ Gain
 - Exponential decay
 - Gain eventually becomes constant
 - Estimate of ~30% gain drop over four years post-upgrade

Upgrade Schedule

- Upgrade fully funded
 - Funded by NSF MRI-R2 Grant
 - On Time, under budget
- Move of T1 accomplished in 2009
- Fall 2010:
 - ANL L2 in operation in parasitic mode in T3
 - Two clusters of seven R10560 PMTs in T3 camera
- Currently:
 - PMT Testing @ Purdue, UCSC
 - Pixel/Preamp building @ Delaware
 - L2 optimizing, debugging @ ANL, Iowa State
- Full install of new pattern trigger systems in 2011
- Camera upgrade over 2012