

The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) mission development.

Matthew Beasley

This work funded by NASA grant NNX10AC66G

- Robert Kane
- Dr. Eric Burgh
- Dr. Kevin France
- Nicholas Nell
- Mike Kaiser
- Ted Schultz
- Professor James Green
- Graduate students who have launched but are still around:

Brennan Gantner

• Undergraduates too numerous to number

Overview

- What are sounding rockets anyway?
 Introduction
- CHESS
 - Science Driver
 - Concept
 - Design
 - Optical
 - Mechanical
 - Issues
 - Known Unknowns

Sounding Rockets

NASA Sounding Rockets

- Solid fuel, typically two-stage rockets (~55 feet long)
- Apogee at ~300 km
- Guided during boost (prevents large dispersion in landing area)
- Telemeter all data down (recovery is not critical)
- Normally deploy parachute and land (mostly) intact
- Capable of slightly better than arcsecond pointing (~0.6 arcsec)
- ~300 seconds of observing time (more or less)

	Vehicle S (in. N⊟?)	tation (in. TNT)
Rocket	677.97 642.31 623.79 603.79 595.41	0.00
 Black Brant IX 	572.41 562.67 556.47 524.97 504.97 503.97	105.56 115.30 121.50 153.00 173.00 174.00 Payload
 Payload ~25% 	443.97 442.97 412.97 409.84 400.71 391.81	234.00 235.00 265.00 268.13 277.26 286.16
		BLACK BRANT VC → ←17.26 inch Ø
	227.45 183.49 169.00 155.00 147.00	450.52 494.48 508.97 522.97 530.97
		→ ← ^{18.00 inch Ø} TERRIER MK70
	29.27	648.70

Motivation of CHESS

- Do some interesting, unique science
- Advance technologies
 - Either by refinements of existing technology, or drive new development
- Perform training
 - Teach students how to build space flight hardware and understand trades in the optical design

Motivation

Astrophysics is driven by spectrographic information

Generally the bluer the wavelength – the more available ground transitions per wavelength interval

Our instrument will cover most of the FUV (100 – 160 nm) at 100,000 resolving power

Image credit: <u>Nigel Sharp</u> (<u>NSF</u>), <u>FTS</u>, <u>NSO</u>, <u>KPNO</u>, <u>AURA</u>, <u>NSF</u>

Resolution Comparison

 Resolution critical for studies of ISM

This target (δ Sco) is too bright to be observed by FUSE (now defunct) or other assets that work at 1030 angstroms

- CHESS Science goal
 - Study ISM within
 ~100 pc of the solar
 neighborhood
 - Clouds and gas properties near hot stars

Spatial temperature distribution in the local ISM (from Redfield & Linsky 2004).

- With high resolution over a large bandpass and efficient use of 2D detector space
- Although they require more reflections which comprise efficiency at short wavelengths the trade is still worthwhile for certain science goals

State of the art

- Space Telescope Imaging Spectrograph's echelle modes are the only FUV echelle operating in space
 – Resolving power >40,000
- Mechanically ruled gratings
- Detector is a MAMA device

Current Issues

- Scatter is a significant problem from STIS
 - Product of mechanical gratings
 - Also holds the echelle to modest incident angle (i.e., R < 2)
- Not related to the scatter is the background from the MAMA window
 Plus small format (1k x 1k)

Image Credit: Howk and Sembach, 2000

New Echelle

- Several groups have developed new types of echelle grating technology.
- New FUV detectors have larger format and/or better resolution

- The theoretical performance looks good
- Corner-cube reflection seems to work

MCP Detectors

- Large format (~ 40 mm diameter)
- Good spatial resolution (~ 30 microns)
- High global counting rates (~ MHz)
- Photon counting
- Should be receiving our new device in the next few months

- Keep it as simple as possible
- Only one focusing optic
- Robust for launch survival and only target very bright stars
 - Our targets are blue to the naked eye

CHESS Prescription

- Echelle (100 x 100 mm silicon wafer)
 - 69 grooves/mm
 - 67 degrees alpha/beta (4 degree turn)
 - Orders 156 266
- Cross disperser (100 x 100 mm fused silica)
 - 571 grooves/mm
 - Alpha ~2.3 degree
- Effective focal length: 1250 mm

- 100 to 160 nm @ 100,000 resolving power
- 1 cm² effective area
- ~ 0.25 degree FOV

Advantages

- CHESS eliminates much of the issues with FUV echelle spectrographs
 - Large detector format improves background subtraction and inter-order confusion
 - Low scatter echelle grating permit the construction of high R (>2) system (high resolution, compact)

- Rockets are a rough ride
- Precision optical alignment + robust do not go together gracefully
- Clean, not expensive, athermal, vacuum compatible, tough as nails, capable to micron level adjustment

Known Issues

- The gratings are printed on a silicon wafer (700 microns thick)
 - How to mount grating without distorting it?
 - Thickness variations may be important
- Each grating is 2 bounces (corner cube) but ... one is a graze. We'll examine the impact on efficiency

Known Issues Con't

- With a face profile like corner cubes, coating with reflective material may be a problem
- How to coat without screwing up the straightness of the wall
 - The perpendicularity of the reflective wall directly impacts diffraction efficiency
 - Do we risk softening the "blaze" function
 - Significant consequences across the instrument

