Antineutrino Detectors for a High-Precision Measurement of θ_{13} at Daya Bay

Karsten M. Heeger

University of Wisconsin on behalf of the Daya Bay collaboration TIPP2011, June 11, 2011

Neutrino Physics at Reactors

Next - Discovery and precision measurement of θ_{13}

2008 - Precision measurement of Δm_{12}^2 . Evidence for oscillation

2004 - Evidence for spectral distortion
2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe

1956 - First observation of (anti)neutrinos

KamLAND

Daya Bay

Reno

Double Chooz

Past Reactor Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France

Discovery of the Neutrino

1956 - "Observation of the Free Antineutrino" by Reines and Cowan

Antineutrino Detection

inverse beta decay $v_{P} + p \rightarrow e^{+} + n$

coincidence signature

prompt e⁺ and delayed neutron capture

including E from e⁺ annihilation, $E_{prompt}=E_{\overline{v}}$ - 0.8 MeV

Reactor Antineutrinos

KamLAND Antineutrino Oscillation (L~180km)

Precision Measurement of θ_{13} with Reactor Antineutrinos

Search for θ_{13} in new oscillation experiment with <u>multiple detectors</u>

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

Concept of Reactor 013 Experiments

Measure ratio of interaction rates in multiple detectors

cancel reactor systematics, no fiducial volume cuts

antineutrino detectors

multiple detectors per site cross-check efficiency

Daya Bay Underground Laboratory

Antineutrino Detection

840

760

90

high-statistics

experiment!

Prompt Energy Signal

Delayed Energy Signal

Daya Bay near site

no position

reconstruction

Detection Efficiencies

Prompt e⁺ Signal

1 MeV cut for prompt positrons: >99%, uncertainty negligible

Delayed n Signal

6 MeV cut for delayed neutrons: 91.5%, uncertainty 0.22% assuming 1% energy uncertainty

Detector Acrylic Target Vessels

design and integration

Detector Acrylic Target Vessels

stress analysis

Karsten Heeger, Univ. of Wisconsin

TIPP2011, June 11, 2011

Bryce Littlejohn, poster

specular reflectors consist of ESR® high reflectivity film on acrylic panels

reflector flattens detector response

Gd-Liquid Scintillator Production

Daya Bay experiment uses 185 ton 0.1% gadoliniumloaded liquid scintillator (Gd-LS). Gd-TMHA + LAB + 3g/L PPO + 15mg/L bis-MSB

Gd-LS will be produced in multiple batches but mixed in reservoir onsite, to ensure identical detectors.

Ω

500L fluor-LAB Two 1000L 0.5% Gd-LAB 5000L 0.1% Gd-LS Gd-LS stability in 4-ton test 0.0045 $\lambda = 10m$ bsorbance 0.0040 0.0035 0.0030 0.0025 0.0020 days 2040 80

60

0.1% Gd-LS in 5000L tank

Systematic Uncertainties

Detector-Related Uncertainties

		Absolute measureme	nt Rela	tive suremen	t	
Source of uncertainty		Chooz	Daya Bay (relative)			
		(absolute)	Baseline Goal Goal w/Swappi			
# protons		0.8	0.3 0.1 0.006			
Detector	Energy cuts	0.8	0.2	0.1	0.1	
Efficiency	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	<0.01	<0.01	<0.01	
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%	

Ref: Daya Bay TDR

O(0.2-0.3%) precision for relative measurement between detectors at near and far sites

Detector Assembly in Pairs

TIPP2011, June 11, 2011

Detector-Related Uncertainties

		Absolute measureme	Rela nt mea	tive surement	t	
Source of uncertainty		Chooz	Daya Bay (relative)			
		(absolute) Baseline Goal Goal v			Goal w/Swapping	
# protons		0.8	0.3	0.3 0.1 0.006		
Detector	Energy cuts	0.8	0.2	0.1	0.1	
Efficiency	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	<0.01	<0.01	< 0.01	
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%	

Ref: Daya Bay TDR

O(0.2-0.3%) precision for relative measurement between detectors at near and far sites

Detector Filling & Target Mass Measurement

Detector Filling and Target Mass Measurement

2218

Tom Wise, Sat, 14.40

estimated target mass error < 0.05%

Detector-Related Uncertainties

		Absolute measureme	Rela nt mea	itive surement	t	
Source of uncertainty		Chooz	Daya Bay (relative)			
		(absolute)	Baseline	Goal	Goal w/Swapping	
# protons	orotons 0.8 0.3 0.1 0.0		0.006			
Detector	Energy cuts	0.8	0.2	0.1	0.1	
Efficiency	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	<0.01	<0.01	<0.01	
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%	
					Def: Deve Dev TD	

Ref: Daya Bay TDR

O(0.2-0.3%) precision for relative measurement between detectors at near and far sites

Antii	neutrino De	etector Pairs			far dete		No e
Ve		→ istance near L ~ 1.5 km			5 	entrance 290 m Daya Bay	Ling Ao Il (under construction)
Component	Parameter	Variation between As-Built ADs	Resultant Variation in Respnose Metric]	
Acrylic Vessels ; Optical Properties		Target volumes vary by i0.5% Avg. thicknesses <1 mm different Concentric to <5 mm Attn. lengths for QA from 1 m to 10 m		ency <0.01 <0.01	$ \stackrel{\text{Yi}}{=} n \text{ efficiency} \text{light yield} \\ \text{uncertainty} \\ \stackrel{-}{_{4,4}} - - - - - - - - - $		
Target	Shape Liquids ^{verties} H/C Ratio	GC Non-scint. volume varies by <1% Unknown 2% between batches and storage tanks Unknown, but likely <0.1%	Non-scint. volume varies by <1%				nse metrics
Reflector Reflectivity Shape		Diameter $<2 \text{ mm}$ <2% <2 cm sag	<i>calibration sources will determine detector response</i>				etector
PMTs	Dist. to AD center Dist. to radial shield Dead PMTs	<2 cm <3 mm None yet observed					
etc	Reflectivity Shape Radioactivity	Likely <10% Surface area >0.5% All materials pass QA testing	Negl. Negl.	Negl. Negl.	<1.0 <0.1	- - No Predicted Variation	

Detector Systematics and Sensitivity to θ_{13}

Antineutrino Detector Pairs

How sensitive is the Daya Bay experiment to relative detector systematics?

Karsten Heeger, Univ. of Wisconsin

Antineutrino Detector Assembly

TIPP2011, June 11, 2011

Henry Band, Thurs, 15.00

Antineutrino Detector Dry Run

First Detector Data

Double-pulse LED to mimic $\overline{\nu}$ $% \overline{\nu}$ interaction

Detector dry run took place in assembly building (above ground). Can see muon events.

Antineutrino Detector Dry Run

Commissioning experience

- detector and electronics can stably operate for several days

- commissioning calibration system
- improvement of PMT electronics
- processing data online and offline detector and analysis experience

Antineutrino Detector Test Transport

Sensitivity of Daya Bay

sin²2θ₁₃ < **0.01 @ 90% CL** in 3 years of data taking

Jul 2011 start data taking with near site 2012 start data taking with full experiment

Daya Bay is most sensitive reactor θ_{13} experiment under construction.

Daya Bay Talks at TIPP2011

Daya Baj

Detector Talks

- Antineutrino Detectors for a High-Precision Measurement of θ₁₃ at Daya Bay (K. Heeger Saturday 12:00)
- Daya Bay Antineutrino Detector Assembly and Installation (H. Band. Thursday, 14.00)
- *High Precision Measurement of the Target Mass of the Daya Bay Detectors* (T. Wise, Saturday 14:40)

Electronics Talks

- The DAQ and Trigger Systems for the Daya Bay Reactor Neutrino Experiment (C. White, Saturday 15:00)
- The Front-end Electronics for the Daya Bay Reactor Neutrino Experiment (Z. Wang, Saturday 14:00)

Posters

- Development and Characterization of the Acrylic Target Vessels for the Daya Bay v Detectors (B. Littlejohn, poster)
- Detector Control System Design of Daya Bay Neutrino Experiment (M. YE, poster)

Summary and Conclusions

- Reactor experiments have played central role in history of neutrino physics
- Daya Bay antineutrino detectors optimized for high-precision measurement of θ_{13} with
 - cancellation of systematics between <u>multiple</u> detectors
 - relative detector uncertainties of $\leq 0.4\%$
 - novel 3-zone design with <u>no fiducial volume cut or position</u> <u>reconstruction</u>
 - pairwise detector filling and installation of <u>identical</u>, <u>matched</u> <u>detector pairs</u>
- Upcoming reactor experiments will measure θ_{13} . Key to neutrino model building. Measurement of $\sin^2 2\theta_{13} > 0.01$ is key to planning leptonic CPV searches in long-baseline v oscillation experiments.

Daya Bay Collaboration

United States (15)(~89)

BNL, Caltech, U. Cincinnati, George Mason U, LBNL, Iowa State U, Illinois Inst. Tech., Princeton, RPI, UC-Berkeley, UCLA,
U. of Houston, U. of Wisconsin, Virginia Tech., U. of Illinois-Urbana-Champaign

Collaboration Meetin

Europe (3) (9)

JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic

Asia (19) (~135)

 IHEP, Beijing Normal U., Chengdu U. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. U., Nanjing U., Nankai U., Shandong U., Shanghai Jiaotong U.,
 Shenzhen U., Tsinghua U., USTC, Zhongshan U., U. of Hong Kong, Chinese U. of Hong Kong,
 National Taiwan U., National Chiao Tung U., National United U.

~ 230 collaborators

Antarctica