Antineutrino Detectors for a High-Precision Measurement of θ_{13} at Daya Bay

Karsten M. Heeger

University of Wisconsin on behalf of the Daya Bay collaboration TIPP2011, June 11, 2011

Neutrino Physics at Reactors

Daya Bay
Next - Discovery and precision measurement of θ_{13}

2008 - Precision measurement of
$\Delta m_{12}{ }^{2}$. Evidence for oscillation
2004 - Evidence for spectral distortion
2003 - First observation of reactor antineutrino disappearance
1995 - Nobel Prize to Fred Reines at UC Irvine

1980s \& 1990s - Reactor neutrino flux measurements in U.S. and Europe 1956 - First observation of (anti)neutrinos

Savannah River

Past Reactor Experiments Hanford
Savannah River
ILL, France
Bugey, France
Rovno, Russia
Goesgen, Switzerland Krasnoyark, Russia
Palo Verde
Chooz, France

Discovery of the Neutrino

1956 - "Observation of the Free Antineutrino" by Reines and Cowan

Antineutrino Detection

inverse beta decay

$$
\bar{v}_{\mathrm{e}}+\mathrm{p} \rightarrow \mathrm{e}^{+}+\mathrm{n}
$$

coincidence signature
prompt ${ }^{+}$and delayed neutron capture
reactor neutrino geo neutrino
$\bar{\nu}_{e}$
mean capture time ~ $200 \mu \mathrm{sec}$ on proton
anti-neutrino detection by inverse beta-decay

including E from e^{+}annihilation, $E_{\text {prompt }}=E_{\bar{v}}-0.8 \mathrm{MeV}$

Reactor Antineutrinos

neutrinos/MeV/fission

\bar{v}_{e} from n-rich fission products
~ 200 MeV per fission
$\sim 6 \bar{v}_{\mathrm{e}}$ per fission
$\sim 2 \times 10^{20} \bar{v}_{\mathrm{e}} / \mathrm{GW}_{\mathrm{th}}-\mathrm{sec}$

mean energy of $\overline{\mathrm{V}_{\mathrm{e}}}$: 3.6 MeV only disappearance expts possible cross-section accurate to +/-0.2\%

KamLAND Antineutrino Oscillation (L~180km)

total systematic uncertainty: 4.1\%

	Detector-related (\%)		Reactor-related (\%)	
Δm_{21}^{2}	Energy scale	1.9	$\bar{\nu}_{e}$-spectra [7]	0.6
Event rate	Fiducial volume	1.8	$\bar{\nu}$	-spectra

Precision Measurement of θ_{13} with Reactor Antineutrinos

Search for θ_{13} in new oscillation experiment with multiple detectors
$P_{e e} \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta m_{31}{ }^{2} L}{4 E_{v}}\right)-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2}\left(\frac{\Delta m_{21}{ }^{2} L}{4 E_{v}}\right)$

Daya Bay Reactors:
Powerful \bar{v}_{e} source, multiple cores 11.6 GW ${ }_{\text {th }}$ now, 17.4 GW $_{\text {th }}$ in 2011

Small-amplitude oscillation due to θ_{13} integrated over E

Concept of Reactor θ_{13} Experiments

Measure ratio of interaction rates in multiple detectors

cancel reactor systematics, no fiducial volume cuts

Daya Bay, China

experimental hall

PMTs
water pool
muon veto system 1, June 11, 2011

antineutrino detectors
multiple detectors per site cross-check efficiency

Daya Bay Underground Laboratory

Daya Bay Antineutrino Detectors

- 8 "identical", 3-zone detectors
- no position reconstruction, no fiducial cut

calibration system
steel tank
acrylic tanks
photomultipliers
target mass: detector mass: photosensors: energy resolution: $12 \% / \sqrt{ } \mathrm{E}$

20t per detector
~110t
192 PMTs

Daya Bay Antineutrino Detectors

- 8 "identical", 3-zone detectors
- no position reconstruction, no fiducial cut

Antineutrino Detection

Signal and Event Rates

$$
\begin{aligned}
& \bar{v}_{\mathbf{e}}+\mathbf{p} \rightarrow \mathrm{e}^{+}+\mathbf{n} \\
& 0.3 \mathrm{~b} \\
& \rightarrow+\mathrm{p} \rightarrow \mathrm{D}+\gamma(2.2 \mathrm{MeV}) \quad \text { (delayed) } \\
& 49,000 \mathrm{~b} \rightarrow+\mathrm{Gd} \rightarrow \mathrm{Gd}^{*} \rightarrow \mathrm{Gd}+\gamma \text { 's }(8 \mathrm{MeV}) \text { (delayed) }
\end{aligned}
$$

Daya Bay near site	840
Ling Ao near site	760
Far site	90

events/day per 20 ton module

Prompt Energy Signal

Reconstructed Positron Energy Spectrum

high-statistics
experiment!

Delayed Energy Signal
reconstructed neutron (delayed) capture energy spectrum

Daya Bay Antineutrino Detectors

Detection Efficiencies

Prompt e+ Signal

1 MeV cut for prompt positrons: >99\%, uncertainty negligible

no position reconstruction

Delayed n Signal

6 MeV cut for delayed neutrons: 91.5%, uncertainty 0.22% assuming 1% energy uncertainty
reconstructed neutron (delayed) capture energy spectrum

Daya Bay Antineutrino Detectors

Detector Acrylic Target Vessels
design and integration

Bryce Littlejohn, poster

Daya Bay Antineutrino Detectors

Detector Acrylic Target Vessels

Daya Bay Antineutrino Detectors

specular reflectors consist of ESR® high reflectivity film on acrylic panels

reflector flattens detector response

Daya Bay Antineutrino Detectors

Gd-Liquid Scintillator Production

Daya Bay experiment uses 185 ton 0.1% gadoliniumloaded liquid scintillator (Gd-LS).
Gd-TMHA + LAB + 3g/L PPO + 15mg/L bis-MSB

0.1\% Gd-LS in 5000L tank

Gd-LS will be produced in multiple batches but mixed in reservoir onsite, to ensure identical detectors.

Systematic Uncertainties

Detector-Related Uncertainties

Source of uncertainty		$\begin{gathered} \text { Chooz } \\ (\text { absolute }) \end{gathered}$	Daya Bay (relative)			
		Baseline	Goal	Goal w/Swapping		
\# protons			0.8	0.3	0.1	0.006
Detector Efficiency	Energy cuts	0.8	0.2	0.1	0.1	
	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	<0.01	<0.01	<0.01	
Total detector-related uncertainty		1.7\%	0.38\%	0.18\%	0.12\%	

Ref: Daya Bay TDR
$\mathrm{O}(0.2-0.3 \%)$ precision for relative measurement between detectors at near and far sites

Daya Bay Antineutrino Detectors

Daya Bay Antineutrino Detectors

Antineutrino Detector Pairs

Systematic Uncertainties

Detector-Related Uncertainties
Absolute
measurement
Relative measurement

Source of uncertainty		Chooz (absolute)	Daya Bay (relative)			
		Baseline	Goal	Goal w/Swapping		
\# protons			0.8	0.3	0.1	0.006
Detector Efficiency	Energy cuts	0.8	02	0.1	0.1	
	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	<0.01	<0.01	<0.01	
Total detector-related uncertainty		1.7\%	0.38\%	0.18\%	0.12\%	

$\mathrm{O}(0.2-0.3 \%)$ precision for relative measurement between detectors at near and far sites

Detector Filling \& Target Mass Measurement

Systematic Uncertainties

Detector-Related Uncertainties
Absolute
measurement

Relative measurement

Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
\# protons	0.8	0.3	0.1	0.006	
Detector Efficiency	Energy cuts	0.8	0.2	0.1	0.1
	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	0.01	<0.01	<0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%

$\mathrm{O}(0.2-0.3 \%)$ precision for relative measurement between detectors at near and far sites

Daya Bay Antineutrino Detectors

Antineutrino Detector Pairs

Detector Systematics and Sensitivity to θ_{13}

Antineutrino Detector Pairs

How sensitive is the Daya Bay experiment to relative detector systematics?

Antineutrino Detector Assembly

Antineutrino Detector Dry Run

Antineutrino Detector Dry Run

charge pattern from

"reconstruct"

Commissioning experience - detector and electronics can stably operate for several days

- commissioning calibration system - improvement of PMT electronics - processing data online and offline detector and analysis experience

Antineutrino Detector Test Transport

Sensitivity of Daya Bay

$\sin ^{2} 2 \theta_{13}<0.01 @ 90 \%$ CL in 3 years of data taking

Jul 2011 start data taking with near site 2012 start data taking with full experiment

Daya Bay is most sensitive reactor θ_{13} experiment under construction.

Daya Bay Talks at TIPP2011

Detector Talks

- Antineutrino Detectors for a High-Precision Measurement of θ_{13} at Daya Bay (K. Heeger Saturday 12:00)
- Daya Bay Antineutrino Detector Assembly and Installation (H. Band. Thursday, 14.00)
- High Precision Measurement of the Target Mass of the Daya Bay Detectors (T. Wise, Saturday 14:40)

Electronics Talks

- The DAQ and Trigger Systems for the Daya Bay Reactor Neutrino Experiment (C. White, Saturday 15:00)
- The Front-end Electronics for the Daya Bay Reactor Neutrino Experiment (Z. Wang, Saturday 14:00)

Posters

- Development and Characterization of the Acrylic Target Vessels for the Daya Bay v Detectors (B. Littlejohn, poster)
- Detector Control System Design of Daya Bay Neutrino Experiment (M. YE, poster)

Summary and Conclusions

- Reactor experiments have played central role in history of neutrino physics
- Daya Bay antineutrino detectors optimized for high-precision measurement of θ_{13} with
- cancellation of systematics between multiple detectors
- relative detector uncertainties of $\leq 0.4 \%$
- novel 3-zone design with no fiducial volume cut or position reconstruction
- pairwise detector filling and installation of identical, matched detector pairs
- Upcoming reactor experiments will measure θ_{13}. Key to neutrino model building. Measurement of $\sin ^{2} 2 \theta_{13}>0.01$ is key to planning leptonic CPV searches in long-baseline v oscillation experiments.

Daya Bay Collaboration

United States (15)(~89)

BNL, Caltech, U. Cincinnati, George Mason U,
LBNL, Iowa State U, Illinois Inst. Tech.,
Princeton, RPI, UC-Berkeley, UCLA,
U. of Houston, U. of Wisconsin, Virginia Tech.,

Europe (3) (9)

JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic

