TIPP for Medical Applications

Chin-Tu Chen, Ph.D. The University of Chicago & Peter Weilhammer, Ph.D. CERN

Wilhelm Röntgen First Novel Laureate in Physics (1901) Discovery of X-Ray: 11/8/1895 First "Medical" Image: 12/23/1895

June 10, 2011, TIPP 2011, Chicago

This Overview

- Only a limited selection of medical applications
- TIPP 2011 papers largely not included
- Emphasis on
 - PP/HEP connections
 - Emerging, forward-looking, next-generation
 - Potentials for routine and wide-spread use (commercialization)
 - Impacts to medicine & health-care

More on Medical Applications:

- TIPP 2011 Tuesday 6/14/2011, 10:30am Patrick Le Du: "Application Outside HEP"

- TIPP 2009, Peter Weilhammer: "Particle Physics Instrumentation and Its Impact on Medical Imaging"

Common Ground of PP/HEP & Medicine

- Diagnostic Imaging
- "Radiation" & "Particle" Therapy
- "Thera[g]nostics" (Diagnostics + Therapeutics)

".....Medical Applications serve as ideal 'prototyping' test and validation platforms of realistically feasible small-scale for PP/HEP Technology and Instrumentation......"

- In Discussion with Marcel Demarteau

PHILIPS

TruFlight™: Enhanced Diagnostic Confidence

Tongue Ca.

improved detectability of sma mets in lung

67 kg; BMI = 29.0 9.8 mCi; 1 hr post-ı (2min/bed)

Data courtesy of J. Karp, University of Pennsylvani

PHILIPS

TruFlight[™]: Enhanced Diagnostic Confidence

116 kg; BMI = 31.2 14 mCi; 2 hr post-inj

Data courtesy of J. Karp, University of Pennsylvania

Lymphoma within iliopsoas muscle w central area of nec

improved delineation of lymphoma activity

What Timing Can An LSO Module Achiev

Crystal Geometry		PMT	
		PM	Г —
	Light Sharing	PMT Quality	Multiple PMTs
Predicted Limit Measured Value		550 ps 575 ps	

Already Near LSO Block Detector Theoretical L

Shorter Optical Path Length & Fewer Reflections

Optimization: LSO Composition

Ca-Doping Gives High Light Output & Short

Measured Results: LSO Composition

Ca-Doping Gives Good Timing Resolution
 ~15% Improvement Over Normal LSO

Measured Results: High QE PMTs

Increased QE Improves Timing Resolution by
 Expect 10% Improvement with 35% SBA PN

Additional Improvements

Hardware	Coinc.	TOF
	(ps fwhm)	Gain
End-Coupled Crystal	543	4.3
Side-Coupled Crystal	309	7.6
Co-Doped LSO	258	9.1
32% QE PMT	219	10.6

TOF PET with *Significantly* Better Timing is Possib To Achieve, We Must "Think Outside the Block Detec

Detector Module Design

Two LSO Crystals (each 6.15 x 6.15 x 25 mm³)

Reflector (on all five faces of each crystal, including the face between the two crystals)

Optical Glue (between lower crystal faces and PMT) Hole in Reflec On Top Face Crystals

— PMT (Hamamatsu R-9800)

Two Side-Coupled Scintillator Crystals per PMT

How Far Can TOF PET Go?

- 100 ps Timing Resolution
- 23x Effective Efficiency Increase
- Very Fast Reconstruction

Acquire & Reconstruct Image in <1 Minu

Conclusions

Benefits of TOF are *HUGE***:**

- 5x effective efficiency gain w/ 500 ps timing
- Greatest improvement in large patients
- Faster reconstruction algorithm convergence

Rebirth of TOF PET Due To New Scintillators: • 575 ps for LSO, 350 ps for LaBr₃

Still LOTS To Do:

- Electronics
- Module Design
- Reconstruction

- Photodetectors
- Scintillators
- Evaluation

Much More Improvement To Come!

UChicago, Argonne, Fermi, +..... Large-Area Picosecond Photo-Detector (LAPPD) Project

Next-Generation MCP-PMT

Project with 4 primary goals:

- Low-Cost LAPPD with good timing and spatial resolution (~\$10/sq-in area cost)
- 2. Large-Area TOF particle/photon detectors with picosecond time resolution
- 3. Understanding photo-cathodes

so that high QE cathodes can be reliably made with tailored spectral response, and new materials & geometries can be developed
4. Produce commercializable modules within 3 years & transfer technology to industry

High-Sensitivity Dual-Panel DOI-PET

100 Activity (MBg 350keV 400keV 450keV

200

Reaching task involving the left forelimb

FDG imaging of a rat's brain shows increased FDG uptake in the right brain due to the motor task performed by the left forelimb of the subject. New CNS Drug Development For Stroke

- Sensitivity 25-30% (3-10 folds increase)

- High-throughput, multi-object

- Pre-clinical drug development

- Clinical or research brain imaging

- Super-resolution recovery

- Novel reconstruction/no rotation

- Uniform resolution within large FOV

Control

(UChicago

Modular, Re-Configurable, Integrative PET/SPECT/CT For Flexible Application-Specific Imaging

4.4cm

1.2cm

Integrative: Assemble & dis-assemble based on applicationspecific needs. Flex-Configure: Novel Recon for flexible scanning trajectories Multi-Modality: PET/SPECT/CT

UIUC, WashU, UC

On-Board, In-Beam, In-Room CT, PET or SPECT for Radiation & Particle Therapy (Theranostics)

OpenPET Front End

Detector 1: Conventional Block Detector

12x12 array of 4x4x22 mm³ LSO crystals 4 Hamamatsu R-9800 PMTs

Detector 2: SiPM Array

16x16 array 3x3 mm² SiPMs

Natural LSO Activity

16 Channel TDC in Cyclone II FPGA
 Performance Good Enough for Time-of-Flight PET

openPET Vision

Open Source

- Hardware, Firmware, and Software
- Schematics, Gerbers, BOM,...
- **Active User Community**
 - Share Software and Expertise
 - Module, Calibration, DAQ, Display,...

Fall, 2011

- Detector & Support Boards Available
- Work on Coincidence Board Begins

http://OpenPET.LBL.gov

RatCAP for PET Imaging of Awake Animals LSO + APD

Simultaneous PET/MRI Based on RatCAP in Small Animals & for Breast Imaging BROOKHAVEN

Large-FOV Positron Emission Mammography

DOD & NIH Funded large-scale clinical trials Conducted at Duke Univ.

Jefferson Lab

Molecular Breast Imaging (BMI)

Dilon 6800 Acella Expanded FOV 20 cm X 25 cm

Successful Technology Transfer to and commercialization by Dilon Diagnostics

Jefferson Las mammogram

High resolution & high counting-rate animal PET scanner

CFOV resolution: 1.67 mm

IHEP in Beijing

Scanners for Molecular Imaging

μ**ΡΕΤ**、 μ**ΡΕΤ/CT**

中国科学院高能物理研究所

Insititute of High Energy Physics , Chinese Acedemy of Sciences

μSPECT/CT

IHEP in Beijing

Scanners for Molecular Imaging

Optical µ**PET**

μCΤ

中国科学院高能物理研究所

Insititute of High Energy Physics , Chinese Acedemy of Sciences

中國科學院為能物現研究所 Institute of High Energy Physics, Chimese Acedemy of Sciences

CM INEP in Beijing

High Resolution whole-body PET Scanner (currently detector research)

Designed Feathers:

- Gantry aperture: >650 mm
- Axial FOV: >150mm
- Spacial Resolution: ~3.5mm
- Crystal material: LYSO
- Crystal number: 30976
- Detector number: 256
- Dia. of detector ring: 810mm

LYSO: an patent-free Cerium-doped Lutetium Yttrium Oxyorthosilicate $(Lu_{2(1-x)}Y2_xSiO_5:Ce)$

IHEP in Beijing

Performance of detector and electronics

Detectors and flood-histogram for 11×11 crystal array

Front-end electronics (ASIC) and 32-Chanel digital board

IHEP in Beijing

PEM (Positron Emission Mammography)

Mammography is a morphological technique

Images courtesy of L.P. Adler, Cancer Center, Philadelphia

A PEM system is a PET device dedicated to breast cancer detection, and has higher gain and lower noise.

Morphological Sensitive to tissue density

Functional Sensitive to metabolism Sensitivity to small tumors (1-2 mm)

The PEM system we designed is prone-style, with annular detector structure.

. .

IHEP in Beijing

Design and production of PEM system have been completed. Performance testing is under way.

IHEP in Beijing

PEM is in clinical trial stage for SFDA registration

Radiotracer More Readily Available

Mobile & Compact Biomarker Generator

Expanding Radiotracer Applications

Microchemistry & Microfluidics

DOE/LBL

Courtesy of ABT

