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Introduction

e The basics of semiconductor sensors and
readout have been addressed, in depth, in a
number of recent books and multi-day lecture
series (see next slide).

e We will provide a brief summary of these topics.

e The rest of the lecture will focus on a variety of
technical matters and recent developments.

e The hope is to provide a useful reference point.
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Suggestions for further reading

*H. Spieler, Semiconductor Detector Systems, Oxford Science Publications, 2005

See also: http://www-physics.lbl.gov/~spieler/

*G. Lutz, Semiconductor Radiation Detectors: Device Physics , Springer (July 11, 2007)
*G. Knoll, Radiation Detection and Measurement Wiley; 4 edition (August 16, 2010)
*A.S. Grove, Physics and Technology of Semiconductor Devices, (1967) John Wiley & Sons;
ISBN: 0471329983

*S.Sze, Physics of Semiconductor Devices, J.Wiley, 1981

*T. Ferbel, Experimental Techniques in High Energy Nuclear and Particle Physics, World
Scientific, 1992

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)
http://pdg.lbl.gov/2009/reviews/rpp2009-rev-particle-detectors-accel.pdf

...and references therein
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Outline

e Historical Perspective

e Basics

e Readout architectures

e Electronics Technology and Systems
e Mechanical and Metrological Aspects
e Radiation issues

e Future directions
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Why Silicon?

e Microelectronics and lithography allow for the
precise patterning of sensor and readout elements

on the ~¥ 1 um scale

e There exists a huge industrial and academic base
which supports this technology, ever improving

e The natural scale maps well onto the experimental
requirements for interesting physics measurements

— Momentum determination at high p-
— Tracking in dense environments
— Heavy flavor decay processes
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Looking for charm in fixed target hadronic interactions.....b’s at lepton colliders

g, ST

Late 1970’'s surface barrier
strip detector (Pisa)

~1980, 128 discrete channels, ~14 mW/channel (CERN)

~1985, “Microplex”, 1st 128 readout ASIC, 3 mW/chan
(Parker,Hyams,Walker)
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Circa 1980, state of the art, 256 channel strip detector for use in a fixed target
experiment, (NA11l charm production) all strips are fanned out to a rack of
discrete amplifiers and line drivers

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
7




«— 3meters — »

Tracking Vi

June 10, 2011

Tevatron
beam pipe

( note scales )

l’sgr//

Primary

Vertex Secondary

Vertex

-
\ Ellipses

“+—5mm-—»

Silicon Detectors TIPP 2011

candidates per 50 um

10

CDF Run Il Preliminary
- B* > J/iyK*

-»-data

B cisio)
ct(Bkg )

—ct(Bkg g)

Fit prob: 44.2%

-0.1 . . . 0.3
ct,cm

Carl Haber LBNL
8



Prototype multi-modular silicon strip stave for use at the High Luminosity LHC

a1 guard ting ATLAS Pixel Module

decoupling
capacitars

o fEs

aﬁgﬁlﬁffgz % 6.3 em?

Present generation ATLAS pixel module in use today at the LHC...Higgs decays?
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Evolution of Electronics

2011 ATLAS FEI4 Chip

26880 pixels, 30 uW/pixel
3000 transistors/pixel

~1980 single channel of discrete
hybrid pre-amp, a few transistors,
14 mW/channel 20 mm
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CERN ATLAS tracker (4" generation, beam in 2008)

Transition Radiation Tracker(TRT)

CDF
1992

g T =, .'-‘--"\__ Ny, Y
- + R s, ¥
S oy ‘."-. Wy - i 4
y . 8 \ RS, - el T " L] =
. - 8 - \ i § e L E
B - .."1-_ I‘. 57 I'l L P .'." S r." [+
\ \ : i r
e ! | , 2 . T d
b N \ RS | oy e J f -
% ¥ 1 L LY \ \ ;\._ Vo f f ==
9 3 Y ! 1 ] "
- E -.._I % 3 i = | \
¢ .,____.I ~ .8 . . |lI |_I ! -1 ' .r!_ .
¥ 4 L 1 ) t | r =
.__J ) 1 gl il :
. |
[ 1 1 | Y ] l
) \ i |
i1
3 | I|
| | f | g
[ | # I

Pixel Tracker

Semiconductor Tracker(SCT)
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Development

generation | year | luminosity| AT chan/area dose readout
1 1990 10%° 3.5us | 50K/ 0.68 m? 25 Krad 3 um CMOS
CDF SVX
2 1995 1030 3.5 us 50K 100 Krad | 1.2 um RHCMOS
CDF SVvX*
3 2000 1032 |128 ns | 600K /5 m? 1 Mrad, 0.8 um
Run 2 1013/cm? RHCMOS
4 2009 1034 25 ns 5x10°/68 m? | 10 Mrad | 0.25 um CMOS
LHC 108 pixels 10% RH Bi-CMOS
5 2020 103> 25 ns 1028 / 200m? 100 Mrad | 65— 130 nm CMOS
HL-LHC 10° pixels 1016 SiGe, Commercial
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Technology

The basic principles and structures have remained the same
yet semiconductor detectors continue to function over a
range of “~10%”

Application specific integrated circuits

Digital design and simulation tools

Wafer size 27, ....... ,10”; feature size, circuit performance
Interconnections, wire and bump bonding

High density electronic packaging

Advanced power management

Composite mechanics

Advanced thermal/mechanical materials

Precision optical metrology

Highly parallel DAQ with embedded processing (FPGA’s)
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What drives the present and future
developments?

e Today’s silicon trackers are large systems typically in
use at colliders for momentum vertex measurement

— Physical size ¥ 1 m radius
— Channel counts ~10’/
e High rate of interactions and track density: 40 MHz
e High radiation levels: 10*>-10%/cm?
e |naccessible: few years
e Mass ruins the response of other systems
e Asthe field progresses all of these aspects increase!
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Specs and Optimizations

e Physics Goals

e Design Parameters

e Radiation exposure

Resolution
Layout
Segmentation
Mass

Rate, L

June 10, 2011

— e Sensor
— thin: lower voltage
— thick: increased signal

— smaller segment: less
capacitance, leakage,
more channels

e Electronics
— fast: high power, noise
— readout architecture

e Cooling

- o Mechanical Support
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Silicon Detectors

e Semiconductor band structure’ energy gap

e Asymmetric diode junction: example p(+) into contact with n
(N,>> Np)

e Space charge region formed by diffusion of free charges,
can be increased with "reverse bias”

junction width :W = \/21pe(Vy, +Vgg ) = 0.52my/ p(Vg, +Ves)
4 = electron mobility, £ =11.9¢,

p = resistivity of n type material = ~1-10kQ cm
euN
Vg, = builtin potential (~0.8V) V., =applied reverse bias
+—> W

V=0 p+ Veg>0
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Response to lonization

e Electron-hole pairs formed in the depletion zone
drift under the influence of the electric field

e Signal depends on width of depletion zone
e Drift time determined by mobility and field

— ~7 ns to cross 300 microns

e Drifting charge is a current which can be measured

Veg >0
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Planar Processing

e Using micro-lithographic techniques arrays of diode
structures can be patterned on silicon wafers.

e The “Silicon Microstrip” detector was introduced in
the late 1970’s and is the basis of all precision types

in use today

Al readout strip

oxide layer

’«——r» 25-200 microns

p+implant

-1 resistivity
Y n material
\ +I
all other layers of 1 micron scale nriayer
200-300 microns
Al contact
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Sensor Details

Pre-amplifiers/
Particle Shapers

Implant Metalisation
+pa ’ ’—[> Sl /\-
T

Strip pitch, P

Implant width, W

.. ", holes

E |
electrons « *

| (typ. 300um)

Backplane, " - type silicon

+ Bias Voltage
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Point Resolution: Segmentation

P

S e B

e Discrete sensing elements
(binary response, hit or no

hit), on a pitch p, measuring o = i
a coordinate x X \/E
e Discrete sensing elements

(analog response with signal

to noise ratio S/N) on a ﬂ

pitch p, where f is a factor — i —

depending on pitch,

threshold, cluster width N P
Oy~ fp(_) <—=
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2D Pixel Structure

Charge sensitive
Preamp + shaping,

Single sided configuration Bunpbordec To _ )
Pixel readout Eiwg% Fead-out signal processing,
chip,

pipelines, digitization

BEEEE

o //\// % \
QDE‘A‘QDE‘A‘QDE‘A‘QDE‘A‘SEE‘AL‘MDE /¢
T ¥
N-type Si l
- Ll Positive
Bias
Diagram courtesy of Z.Li and V.Radeka
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Further Variants

Silicon drift detector

p+ strip side /: Al M/
. N o+

8 it aie e AL Double sided detector

particle track

L

\ I
‘ n -
) / 3 hu?es } n* type bulk p+ In n
bias lines il ‘ »
\ [ } . *e]ectrons n+ in p
. Y

n+inn

depletion limit

igolation implants
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Pixel Detector Types

Three Phase CCD Clocking

jt——Pixel 1 ——}tt———Pixel 2 ——»|
P(1) PF(2) P P(1) P2} PE)
0 0 0 ® w ®

. - T‘ype Buried Channel :
_ p-Type Silicon -

|
[

CCD

Charge Coupled Device
Relatively slow

Low noise, Low mass

June 10, 2011

Aluminum Ba

Monolithic Active Pixel
electronics and charge
formation/collection in a
thin epitaxial layer, diffusion
Moderate speed

Low noise, Low mass
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petype Sili
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Medipix2 Electror

ckside Layer
(Ohmic Contagt) ™

ty

o Pad -

Ider Bump-—"""

dout Pad — F— -

vics Chip — ==

: v Charged Particle

Hybrid pixel

FE IC and sensor joined
by a bump bond

Fast

Radiation Hard
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Signal Processing Issues

e Signal: expressed as input Y e e
charge, typically 25,000 o L@ﬁ' e
electron-hole pairs (4 fC) | N2 = 7

e Gain: determined by = "
feedback and capacitance v bias

e Noise: various sources, E J |
must be small compared Al
to signal (S/N > ~10) e ——

EwmwwmwwﬁitﬁfwwMw‘f '
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Leakage Current

(] Lea kage Cu rrent integrator |shaperv0Llt
R bias |G
— DCcomponent blocked by g f h
oxide capacitor LW i
— |f DC coupled then must ;EE g "
be compensated by filter, v bias
feedback, or injection 1, = &M (Varerna Ny WA
L 2
— Before (after) radiation n; = intrinsic carrier concentration
damage ~ 1 nA (1 ma) o = recombination cross section

. Vinermar = Carrier thermal velocity
— AC component is seen by e .
N, = trap density

pre_amp: nOISe Source A:junction area

| L(T)oc T 2aEa/2KT
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Noise

e Fluctuations ~ Gaussian G

— Leakage Current

— Preamp “input noise charge”, white noise, decreases with pre-amp
current, increases with faster risetime, a,b are constants and C, is the

detector capacitance

— Bias resistor: source of thermal noise

— Radiation activated

e Extraneous Noise

integrator shaper

| V out
G
R bias |

|—| t rise /1?

Cb ¥ oxide
< p+

n+

.

V bias
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Full Evaluation of S/N

% Rs ens

Noise model

’_4.

Shaping models
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Readout Electronics

Feature

: FE|4 2011
S1z€ FEI3 2003 - 0

A 4

complexity

e Large channel count and complexity require custom readout chips (ASICs)
e On-chip complexity increases with process evolution

e Impact of powerful design and simulation tools

e Mixed analog-digital signals on the same chip

e Speed and noise performance have kept up with requirements but S/N
often remains an issue, particularly with longer strips and irradiation
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Readout Architectures

e Experimental conditions, have, to some extent
driven the development of a variety of readout
architectures

e Accommodate properties and limitations of available
|IC processes, a moving target

e Subjective aspects have entered as well

e Analog: process analog pulse heights off detector,
full resolution, diagnostics

e Digital: digitize on detector, full resolution
e Binary: on detector threshold, simplify readout
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Double Correlated Sample and Hold

[

e QOriginal MOS monolithic architecture, no resistors

e High frequency bandwidth limited by pre-amp
e Low frequency limited by AT=T2-T1

e Can be generalized to N samples but incurs a noise penalty
factor of V2 for each pair
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e Example is the APV25 chip developed for CMS

e Readout all analog pulse heights, no sparsification

e Dual function: fast time mode, slow low noise mode

e Utilize analog signal processing on-chip to measure pulse time
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Digital
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e Example is the SVX4 chip developed for CDF

e Switched capacitor analog pipeline
e Combined analog threshold + 8 bit digitization

e Sparse readout
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Binary

128 PARALLEL SIGNAL CHANNELS DATA COMPRESSOR
L AR : & SER'AL'ZER
H FPREAMPLIFIER COMFPARATOR 3.3 us DIGITAL PIPELINE i
R :
—‘.-‘.i— EDGE SENSING & DERANDOMIZER | \
C‘_F MASK REGISTER & BUFFER I I

INPUT o— I D—H— - — '
o= % ;
; THRESHOLD T
o H
dﬂ CHOPFER TRIM DAGC i = OUTPUT
n READOUT READOUT
CONTROLLER LOGIC
DACS & L] : i
CALIBRATION LOGIC COMMAND I !
DECODER

e Example is the ABCD chip developed for ATLAS, BiCMOQOS
e AC coupled pre-amplifier shaper for 25 ns collisions

e Comparator + trim DAC per channel

e 1 bit pipeline clocked at 40 MHz, L1 buffer

e Data compression

e Control and configuration protocol

e DSM CMOS version exists as well, 130 nm underway
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Pixel

DETECTOR CHARGE-SENSING COMPARATOR LEADING + TRAILING COLUMN GLOBAL
BUS

PAD FREAMPLIFIER EDGE RAM

SERIAL
DAC CONTROL
LEVELS BUS

2

VAN

DUAL RANGE v, : N
CALIBRATION __."___ ! .
I\ |'4—Tn:-T—"‘|
TT |~ :
é) EJ @ & A .||‘i 1
r
40 MHz CLOCK,
FROM TaT TRIM THRESHOLD :
. CALIBRATION DAC TRIM DAC
. DAC
: [y f Y
GLOBAL INPUTS
AND
CONTROL LOGIC

e Example is ATLAS FEI3 pixel cell

e Pulse height is measured by “Time over Threshold”
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Additional architecture organizes the data in columns for readout
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Going to the next level

Readout ASIC
Module Control Chip

P | - ] of ud ] wl wt

Power Control Circuit
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Diagnostics

Single channels can be studied in detail “on the bench”
Channels are integrated in chips, chips into modules, etc.....

Large detector systems require extensive monitoring and
calibration

— Parasitic collective effects and external noise can occur at
the system level

Much effort to develop meaning procedures which can be
implemented efficiently

These will differ for the various architectures due to the
limitations imposed.
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Binary Performance Measure
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Full Response Study: Module

waveform Graph

Intensiy Graph
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D.Amidei et al, NIM A 342 (1994) 251-259

Noise and Correlations

For analog and digital
— — == systems

|
ICd ICd ICd
* |nterstrip capacitance C_. dominates

e Total noise charge at an input N is due to that channel and a
coupled contribution from N-1,+1, with a negative correlation

e A useful statistic is to histogram the instantaneous difference
between channels separated by J=1,2,3,.... strips ( /2 )

e ForJ~5 the mean approaches 1 in a system with no extra
noise
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Noise Interference

g gl T
W 0 I =il
*%%k l%i
ond [ 1: collect t AT f 15t L1: read out and discard
e Deadtimeless systems: simultaneous integration & readout
o

Test: Consider a 132 cell pipeline, collected at 40 MHz, issue a
trigger, readout, discard, wait 132 cycles, issue a trigger, readout
Operate at onset of low occupancy

Vary grounding, shielding, and filtering configuration

om0 b 1
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High Density Packaging
e Electronic packaging is often the only “reducible”
part of the detector mass

e Advances in packaging have allowed us to integrate
increasing complexity into denser footprints

e Maintain necessary thermal performance with
minimized mass and high reliability

e Key technologies are based upon commercial
processes

e Avoid the homemade syndrome
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Key Technologies

Surface mount technology (SMT), pick & place

Flexible circuits

High density multilayer PCB and flex

— Trace widths/space approaching 25 um

Large area flexible circuits > 1 meter length

C
T
T

nip on Board (COB) and Chip on Flex

nin film on ceramic, glass, and polyimide

nick film on ceramic, BeO and AIN substrates

Lamination onto high-TC carbon substrates

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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Electrical Materials

material Re3|st|V|ty dielectric Xo(cm) Thermal C. | CTE (ppm)
pucm) constant (W/mOK)

Silicon 11.9 9.37

Aluminum  2.65 8.9 237 23.9
Copper 1.67 1.43 398 16.6
Gold 2.44 0.335 297 14.2
Carbon 1375 19.32 varies

Kapton 3.4 28.4 0.2 ~20
SiO, 3.9 10 1.1

BeO 104t 6.6 14.4 230 8.3
AIN >1020 9 8.4 170 4.3
AlLO, >10%0 9.0 7.55 24 7.2
G-10 4.7 19.4 0.2
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Technology examples

e e——
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Emerging Interconnects

Attribute Standard HDI: Dense HDI: LCP HDI: PTFE
(Epoxy Glass or | (Particle Filled (liquid crystal (PTFE)
Polyimide) Epoxy) polymer)

Line width 75 microns 25 microns 37.5 microns 25 microns

Line space 75 microns 25 microns 37.5 microns 33 microns

Via type mechanical laser Laser laser

Via diameter 200 microns 50 microns 30 microns 50 microns

Stacked vias Build up only Build up only In 2010 In 2010

Capture pad 400 microns 100 microns 110 microns 110 microns

diameter

Surface finish E-less Ni/ | Au, Same Same Same
ENEPIG

Solder mask yes yes yes no

Thickness <1Tmm 0.4-.7mm 0.5mm 0.5mm

Layers 10 12 4,6 in 15t article | 11

June 10, 2011
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Mainstay of microelectronic interconnection
Typically uses 25 um Al or Au wire, ultrasonic welding process
Requires particular control of materials, cleanliness, and process

Automated (5 bonds/sec) machines are commercially available and in
widespread use in the HEP and related communities

75 um pitch is achievable with good process control, a typical HEP “module”
might contain ~5000 bonds

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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2cm
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I
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< »

e Wirebondingis impractical for large 2D arrays
e ATLAS pixel cell is 50 x 250 um
e At this density FE interconnect is made with a conductive “bump”

e Thisis an industrial process and requires expensive technology, therefore
has not become “in-house”
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Bump Bonding Processes

SOLDER BUMPING

7

Sputter Etching and Sputt enng
of the Plating Base / UBM

—

Spin Coating and Printing
of Photoresist

Electroplating of Cu and PbSn

- -

Resist Stripping and wet Etching
of the Platina Rase

Solder (PbSn)

Sensor

B
Sensor
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Wafer Cleaning

Photolithography

Plasma activation

S
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Indium




Issues for Large Systems

e Grounding and Shielding
e Powering
e Bias
e Control and Data Transmission
— Cables
— AC Coupling
e Monitoring and fast/slow control

— Interlocks, safety

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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Grounding and Shielding

) shield
Bias

WA
iﬁ; I >— M >

-_— < -
1 < -

-

e Front end is a mixed analog and digital system

e Data transmission and control introduces long range signals with drive
e Sensor has a capacitance of pf's, so mV of noise is an issue

e Rules apply but also thorough diagnostics before installation

e Trace down and control coupling paths and impedances

e Control locations where grounds are connected
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Power Distribution

e Conventional wisdom stated that
each “module” of tracker should
be serviced independently

— isolate single point failures

— Avoid electrical interference
and ensure low noise

e For large trackers this has led to a
cabling (mass and access)
limitation

e Future trackers may be larger by
X5 or more

e An active R&D effort in alternative
powering approaches

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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Powering Alternatives

e Independent Power

— One cable with current | and V._ . for each module

mod’ mod

e Serial Power

— Reuse current, connecting N modules in series, one cable carries
current | V=NV _ 4

— Practical implementation utilizes shunt regulation and active bypass
protection, requires extensive AC coupling of control and data

mod’

e DC-DC Conversion

— Step down voltage by factor R at each module, one cable carries
l,,.=Ni.4/Rat V=Rv__4

— Practical implementation utilizes switching converters either charge
pumps or inductive

e These alternative approaches can be very efficient compared to linear
regulation
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Power architectures

e |ndependent powering L

I

e | w
inannununsg L
I nnnnn g

Hybrid current = |
Number of hybrids =n l ’ I

Total current = nl
Power lines = n

e Serial powering

5 6
Hybrid current = |
Number of hybrids =n c(::uorrr]::iné
Total current = | source T | LELELE S1E & -
Power lines =1
e DC-DC powering 1 2 3 4 5 6 -l n
- _ Constant
Hybrid current = | (high)
Number of hybrids=n Y27 B H I HH|BHHE| &~ e
Total current = n(l/r) voliage (?
Power lines =1 source 53




Serial Power

nnnnnn

pppppp
uuuuuu

Many variations on this have been studied in the R&D efforts,
custom ASICs exist and are in development

Large systems (>30 drops) have been operated with AC coupling
Stable, low noise behavior obtained

Failure recovery and control circuits have already been tested
Most efficient when current per module is uniform
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DC-DC Conversion

e DC-DC converters S L
require high frequency VT () DN TVD C=T= R TVO
clocks

1. Charge

e Realistic circuits have
been operated in close
proximity to
sensor/modules with
excellent noise
performance, when

adequately shielded. Buck converter with
custom air core inductor

e Main concern is the
mass and size of
Charge pump required components
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Control and Data Transmission

Efficient low mass cabling requires a high degree of multiplexing
Low power differential protocols — LVDS

Clock and command distribution looks like a “multidrop” system
(MLVDS and other variants)

Bandwidth: fast clocks on copper 40-160 MHz or greater
Transmission line structures in large flex circuits

Much use of optical transmission, reliability concerns remain....
Serially powered systems require AC coupling

Much of this looks like a departure from standard practice

r— | WMeters, Copper 4>|

I Y . .
Differertial . Tx 1o Bx , Differerdial
pirertal LVDS Feceiver

. * o .
L. s & o
Terrrdration
B R Resistor
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Bus Cable Geometry and Impedance

Materials: Al foil 2mil, Dupont LF0100, Shinetsu CA333 2 mils, Cu 18 um,
Kapton 1 mil, Adhesive

Differential Stripline Impedance Calculator

—
W, 8, W
| e Yy
ADHESIVE TI-

Er
07 = e

Notes:
KAPTON 1) Caleulation assumes traces are centered vertically.
2)8T=50

P RrERr N QR

=

Enter dimensions:

Trace width (W) mils
Trace thickness (T) trils
] Trace spacing (=) I:| tnils
>>Matches measured impedance Distance between planes (B) il
Eelative Dielectric constant (Er)

Differential Trace Impedance 729 ohims
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Signal Dispersion in a Large AC Coupled Multidrop System
o —————

it Em 1L ST e
mﬂmmaT/f wivel 1
1ofeizall =1 x
. o BCO in [mV] vs Position
BCO out Position 2
. AC coupled LVDS receiver,
g ° driver, controller
20 0 60 -
ns . 4 . = i G e ¥ 10 15 20 25
BCO in Position 0
BCO in at Position 23 T T T
§ID
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Monitoring, Fast/Slow Control

) .
PR S —
Ay |
“ﬂ;h—‘g ettt b4y
w/ 1 S
S Tage 27 17187 TT7iaa ¢ &2 i8:i81
272-Nay 130 TR = Wed 27

......

e Voltages and currents

e Local on module monitoring, dedicated ASICs: fast
e Dedicated nearby process controllers

e Online logging

e Machine interlocks

e Service interlocks

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
59



Mechanical Aspects

e Precision tracker requires support structure
which is stable and low in mass (Xo).

e There are two key materials/classes which
come into consideration here

— Beryllium: structural grade metal, low Z, metallic
CTE, expensive, and hazardous to machine,
probably impractical for very large structures

— Carbon composites: tremendously flexible class of
materials, reasonable Xo, good thermal
properties, variable CTE
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Mechanical Grade Materials

material Density Xo (cm) Young’s
(gr/cc) Mod (GPa)

CTE

(PPM/°K)

Silicon
Beryllium
Aluminum
Stainless Steel
Titanium
Carbon

Carbon fiber
frac 70-40%

CF: K13D2U

POCO
Graphite foam

Boron Nitride

June 10, 2011

2.33 9.37 130-185
1.85 35.27 255
2.70 8.9 69
7.9 1.76 193
4.54 3.56 116
2.21 19.32
~1.7-2 23-27 180-125
along fibre
2.2 135 Msi
0.5 ~100 low
2.25 20.8

Silicon Detectors TIPP 2011

2.8-7.3
12.4
23.9
11.7
8.5
0.6-4.3

Varies with
layup

0.7

<1

TC: W/im°K
149

201
237
95

10’s —
several 100’s
800

45/135
in/out

250-300

Carl Haber LBNL
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Beryllium

Bulkhead which supports vertex detector layers, radius ~ 7 cm
e Costly, precision machined component
e Modest temperature excursion from RT
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Carbon Composites

e Carbon fiber “sheets” consist of filaments or
woven layers impregnhated with epoxy.

e By arranging layers in various “lay-ups” and
configurations, a great variety of components
can be created with enhanced mechanical and
thermal properties.

e Other advanced carbon based materials can
be combined in structure as well
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Basic Issues

e Sag in a uniform composite beam

b
. wL* < >

o(bending) =
( 9) 384El t
|=2bi+2bt(c—+tj _bt®  btc® +2bet” +bt zbtc(£+tj

12 2 6 2 2 t
5 wL*

384Ebtc(;+tj

e Stress in the “bi-material” strip

. 6y Esy(hy + ha ) hihaoe
EZhy +4Ey Eyhihy + 6 By Eyhihs + 4By Eyhihy + E3h;

€ = (o — ag) AT
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Example: Carbon Fiber Beam

e Structure consists of 2 CF facings laminated on either side of a
“soft” core w. embedded metal cooling lines: sandwich beam

e Symmetry keeps the structure flat

e Facing contains multiple sheets in order to tune mechanical
and/or thermal properties

e Core may have enhanced thermal properties to improve
cooling efficiency

e Subsequent (or co-)lamination of electrical circuitry and
Sensors

e |ssue of stress between carbon and other unlike materials as
composite is cooled from lamination temperature to RT and
to operating temperature
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Bus cable<” |_J_[& : T Carbon

fiber
facin
7 Carbon honeycomb \ J

Coolant tube structure
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Composites Facility
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Some assembly steps

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
69



BNL,Yale
LBNL
RAL
Oxford

70 7

Prototype Core

Construction

Carbon poco-foa

Honeycomb core

ey S

Carbon poco-foam




Example thermal performance for various material
selections, calculated

(B) Static Temperature -Celsius (1) Static Temperature -Celsius

-17.4983 -13.3975

A18.241 4 5577

-18.9838 5718

-19.7265 -16.8782

-20.4692 -18.0385

212118 -19.1987

219547 7 -20.359

226974 -21.5192

23001 226795

-24.1828 -23.8397

2492 25

Load case: 6

Load case: 4

£ Last lteration/Step 27 Last Iteration/Step
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Advanced Materials

e Processed carbons

— Carbon-Carbon: CF reinforced C
by pyrolysis
— Pyrolytic Graphite: TC>1000

e Graphite Foams: of varying density,
conductivity

— Pocofoam
— Allcomp foam
e Boron Nitride: fillers
— Varying particle size, shape

e Thermal adhesives: rigid, compliant,
radiation hard

e Silicon Carbide: solid, foam, also an
electrical material
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Metrology

e Precision, non-contact mechanical measurement
e R&D, construction, in-situ alignment & monitoring
e Optical and touch probe CMM'’s

e ESPI/TV Holography

e Frequency Scan Interferometer (FSl)

e Laser rangefinding displacement sensor

e Confocal probe

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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Metrology

Technology Application Ease/Speed

CMM-touch

CMM-optical

ESPI

FSI

Laser
Displacement

Confocal
Probe

June 10, 2011

Large objects

In plane location

Small heights
Dynamics

In-situ alignment

Stability

Flexible heights

R&D tests

Precision heights

Small area

Xlylz ~ um’s

Xlylz ~ um’s

Xlylz ~ um’s

One axis
Z~um’s

10-100 nm

commercial

commercial

commercial

custom

User defined

Limited use
commercial or
user

Silicon Detectors TIPP 2011

Teach mode

Same

R&D tool

System design

User defined,
1 KHz

User defined,
100 Hz-2 KHz

Carl Haber LBNL
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Metrology: Coordinate Measuring

Toolbox Measurement Model Window or

Good for repetitive, feature driven Tile Main Tagetand  Image , ,
. Bar Menu Image Controls Window Window Surface Window
surveying I N " — L

TaniBed
0 ot | @ @ | e
< |l e|n | = ;

e |
11111 S j  segemams =
e, |, it G 1= 3] ] 5] o e —————
j_j _________________ = Eejo(as(p| AT S00 2P
! o|o|e| e _|"“°"
| pnmemieeneney _:Jr..\\_._..._..._' | | aNE :'“. e e e =
I T — 1
2] serg
| =1 5waan,

Digital Readout llumination Target Settings Tool and PrintEdit Window
(DRO) Window Controls Window Target Icons (Advanced Part

s Routine Editor)
| N

These devices have been used
extensively in the development and

il construction of silicon trackers
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Metrology: ESPI

Electronic Speckle Pattern Interferometery
Also called TV Holography

Object
bram
Eram
] splitter
Object Video
tengtor
Reference
bram
Modes of a clamped metal plate
June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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The measurement principle
uses triangulation. The
position of the reflected light
on the Li-CCD moves as the

The displacement amount of
the target is measured by
detecting this change.

position of the target changes.

Metrology: Laser Displacement

| Composite_Yale B Side Warm |

Minimum = 20.363 mm.
Maximum = 20.624 mm.

A=0.261 mm.
Omeas = 0.004 mm.

Minimum = 20.384 mm.

Maximum = 20.444 mm.
A =0.060 mm.

x [l

Measured Warm-Cold Difference

Minimum =-0.115 mm.
Maximum = 0.126 mm.
A=0.241 mm.

Fit of Difference

Minimum =-0.008 mm.
Maximum = -0.000 mm.
A=0.008 mm.

z [mm]

~"700 110
x (mm)

Warm — Cold
No significant distortion



Metrology: Confocal Probe

! White light peint
source (W)

Spectrometer

Beamsplitter

Lens (L}

N Monochromatic
Focus point (M) A Images of the
- N point source W

Visualization &
Signal processing

~——— Surface of the object

June 10, 2011
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<] Application 2 : Mold for microlens array [

Aims :

» Quality control of a mold for fabricating microlens arrays,
» Control of the shape, the spacing and the position of individual array celles,
» Control of polishing quality.

Click on image to improve definition

, O

Controller :
Optical pen :
" . Sample
o 20 a0 a0 80 100 120 130 um Material .
1 2 3 Picture size
Mean depth 822 pm &2 pm £27 pm

Measurement pitch

2 - Profile through the mold along the line shown on image 2

Measurement system :

"

2 - Mold for microlens array (false color Altitude image)

Measurement parameters

MICROMESURE 2 Profilometer
OP 20

CHR 150

. Mold for microlens array
Metal

$ 150 pm % 130 pm

0.5 pm x 0.5 pm

Carl Haber LBNL
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Radiation Environment

e Primary source are collision products
— High energy charged particles + neutrals

e Additional component due to “accidents”
e Primary field falls with radius as ~r -(1-2)

e Each interaction yields ~7 particles/angular unit: sum
crossings and interactions

e Fluence and dose have increased >10% since mid-80’s
— Near future expect unprecedented dose due to increased
luminosity and energy

e 100 Mrad absorbed energy (units)
e 10%>-10% particles/cm?
e Compare to: space (~1 MRad), nuclear weapons (~1013)
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Radiation Effects: lonizing

e |ncident particle interacts with atomic electrons
e Measure in energy absorbed (rads (Si))
e ¢/h pairs created, recombine or trap

e Transient effect
— Actual signal formation
— Single event upset condition in circuits

e Electronics: charge trapping at Si/SiO2 interface
(largely controlled by rad-hard circuit designs or
thinner oxides)

e Detectors: surface effects, oxides

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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Electronics

e For presently operating systems commercial rad-
hard CMOS has provided sufficient resistance.

e New chips use commercial deep submicron CMOS

— Thin oxides provide automatic hardness, verified in test

— Augment design rules with enclosed gate geometries to
block radiation induced leakage paths

e Certain bipolar technologies are also rad-hard
(analog)
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Radiation Effects: Non-ionizing

e Incident particle interacts with nucleus

— Displacement damage — permanent or slow to
reverse

— 2" order effects as defects interact over time
e Depends upon particle type and energy
e Measure in particles/cm?
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Radiation Effects: Detectors

. L
Da rT\age to the p.erlodlc €1 (OVipermat N WA
lattice creates mid-gap - 2
states n; = intrinsic carrier concentration

o = recombination cross section

e Increased leakage | .
5 Vinermat = Carrier thermal velocity

— Shot noise N, = trap density
— Power A = junction area
— Heat

| L(T ) oc T 2 Eal26T
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Reverse current with fluence and time

# ntype FZ- 7o 25 KOcm __.'

o[ B ntype FZ- 7 KQom ol

I 10 £ 8 n-ype FZ- 4 Klem E

E [ O n-ype FZ- 3 Kiem
ﬁ [{]’3 - m p-type EPL- 2 and 4 KGem

4| 7 n-ype FZ - 780 {em

> 10 © niype FZ- 410 Qcm

: ntype FZ- 130 £cm

=] ID—S L nype FZ- 110 8em

: » ntype CZ- 140 Qem

; [ & paype EPL-380 (2cm ]

Iﬂ—”}ll 1012 1013 104 1013

(I)eq [C[n_z] [Nl LD Thesis]
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Al =aVO

Damage constant o = 2—-3x10

Volume V =2x10°cm’
Incident Flux ® ~10" —10" particles/cm® @ LHC
= Al ~2uA@0°C

Silicon Detectors TIPP 2011

oft) [107"" Afem]

s oxyoen enriched slicon [0]= 210" em™
) parameterisation for standard silicon

| SLARll PRLY T hesas | |
RN 1

il Lol Lol 1 il 1
| 10 100 1000 10000
annealing time at 60°C [minutes]

47 Amp
cm

(current doubles every 7 degrees)

6

Carl Haber LBNL
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Thermal Run-away

End Temperatures, 20/30 Through 35/45 Measured

—a— TS5 T oy

1] — e TIIM 2uor | |

i TS JFED T e

it T3 15943 1 b

Silicon Temperature (°C)
& &

Power density pw/mm?

Increased current - Power dissapation - Increased temperature - Increased current
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Change in effective acceptor
concentration

Effective space charge (N4 = V;4) with fluence and time

o  Creation of acceptor states or

— T oo T ;]ﬂ}:
g 00 " removal of donor states
- | e
— I[}Uﬂ— . O 2 V' = - -
S S000  ypeinveion e w0y {107 B —  Effective change of resistivity
1 o0l " I —  Typeinversion:n = p
i 3 . Mem? 3 10 — - -
e U 1" Z - Depletion voltage changes in
Z 0 \f |0 = proportion to [Nggf] =>higher
o u , " E o . .
5 o nobpe P -0pe =2 voltage operation required
IE 1. - -
e T LT T —  Dramatic time and temperature
D, [102 em2] oo dependence
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Charge Collection

e Reduction in charge collection efficiency (CCE)
N, n(t) = Nyexp (-t/7,,,)
— Ratio of collection and charge trapping time constants
evolves with fluence

— 1
m —
E‘ PR S i * ' —0.9
E 18000 - f g - ._._- . Gregor
o i & L Jos Kramberger,
16000 ;f.;' i Ljubljana
. / 107
14goof— .f ol —_—
_.. ‘.. __ D‘E
12000 ¢ =511D13| m o ]
*flﬁdmxw cm? + ot Jdos
10000 ¢qj1511g|3¢m p 5tll}]5 ...... .
- @ oq=20%10 Jem? .
auuu_—“ $m3%ﬂg gmg _ charged hadrons (p":n-n{) —{0.4
1 1 I 1 I 1 1 1 I 1 1 [} I
O 1 n|:| zun 300 400 500 600
uv]
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Excess Radiation Induced Noise

An effect seen in AC coupled or double
sided sensor which are biased with

punchthrough structures (this approach

has been widely abandoned)

Functional dependence is like shot
noise but magnitude is 4X too large

Scales linearly with integration time
Only induced by heavy particle flux

Actual mechanism is not understood
but phenomenology is consistent

P. Azzi et al, NIM A 383 N.1 (1996) 155-158

June 10, 2011
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.__.______

— 14430GF—| * Testladder 1 F I

.ﬁ | o Test lodder 2 .
2 - | #% SVXIl protatype p(n)-side 5
$ 120000~ lluminated unirrediated loader ! .
“¥ 10000~ .
- o
L .
. e
BOODF s |
f
- .
! . |
Gﬂﬂﬂl— |
! i
F -
4000+ .u
2000 ’ Shot nuise avpechalio

. i |
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Y9 200 400 800 800 1000 {200
Leakage Current [nA/stripl
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Methods to Control Radiation Effects

e Most represent some tradeoff

e Size matters

— Smaller volumes generate less leakage current (but require more
channels, power, heat...)

— Thinner detectors deplete at lower voltage (usually means less signal)

e Temperature

— Low temperature (-10 C) operation can “stabilize” reverse annealing
for <1014

— Reduce leakage current effects

e |ntegration time

— Current noise is reduced for short shaping times at the expense of
increased pre-amp noise, power.
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e Biasing schemes

— Reduce value of parallel biasing resistor to reduce voltage drop due
to I .. Ry at the expense of increased thermal noise

e HV operation
— Configure detectors to withstand higher voltage operation
— Tolerate increased depletion voltage
— Operate in partial depletion (collection issues)

e Low noise electronics
— Tolerate reduced signal due to CCE and partial depletion

e Configuration
— pin nsubstrate — simple, type inverts

— nin n substrate — 2 sided process, can be operated in partial
depletion after inversion

— nin p—non-traditional process, does not invert

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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Strip detectors with multiple guard ringstructures to tolerate HV=500 V operation

Al readout strip

I-—'— 25-200 microns oxide layer

p+implant

high
- resistivity
n material

all other layers of 1 micron scale n+layer
200-300 microns

Al contact

g

251V at t=3385d

Depletion voltage [Valt]

218 V at t=3385d

197 V at t=3385d

Simulation of 10 year operating scenarios
for silicon tracking at the LHC
L= 1033-1034

174V at t=3385d

160V at t=3385d

——2days at 20
2days at 20°
2 days at 20
——2days at 20
— no maintena

3285 3650
Time [days]
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New developments

e Engineered materials
e New configurations, 3D electrodes, interleaved strips
e Cryogenics
e Alternate materials: Diamond, SiC,...
e RD efforts organized at CERN
— RD42: development of diamond as detector
— RDA48: radiation damage to silicon
— RD50: development of radiation resistant detectors

— RD39: cryogenic detectors and systems
— http://rdXY.web.cern.ch/rdXY

June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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Engineered Silicon

e Microscopic 10— — _
: L[ ARy SO 600
understanding of 5 8| ¢ cimin sion o -

. o | e 1500 2
damage mechanisms, = sandad & a0 &
defects, and kinetics 3 a0 &

- |V|Od€|lng Oxygenated ':200 >§
— Measurements | 1'%
0. [
T 0 1 2 3 4 5
glergg nadnedntceem p e ra t u re (I)24 GeV/c proton [1014 C]n-z]
[RD48-NIMA 465(2001) 60]
e Engineer the silicon for
greater radiation
resistance
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3D Detectors SR — S -

Jreerermmaseeds
ey

3D silicon detectors were proposed in 1995
— by S. Parker, and active edges in 1997 by C. Kenney.

elecfrodes

Combine traditional VLSI processing and

n+. active ed ge MEMS (Micro Electro Mechanical Systems)

techno [ogy.

. NIMA 8
! 395 (1997) 32, Electrodes are pvocessed inside the detector
2. 1EEE Trans Nucl Sci 464 (1999) 1224

. bulk instead of being imp[anted on the

3. 1EEE Trans Nucl Sci 482 (2001) 189 Wafor
4. 1EEE Trans Nucl Sci 485 (2001) 1629 afer’s surface.

. IEEET Nucl Sci 48 6
> rans ' ucl S 48 6 (2001) 2405 23.26 The edge is an electrode! Dead volume at the
6. CERN Courier, Vol 43,Jan 2003, pp ) Edge < 2 microns! Essential for
7. NIMA 509 (2003)86-91 -Large area coverage

-Forward phys ics
S.Parker
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W
U

Speed: planar

o - et I R BRGeEEEE = - -
i A R i
| e, P |
e R R
LS DT = =

1. 3D lateral cell size can be smaller than wafer thickness, so —_ _ _
1. shorter collection distance

2.in 3D, field lines end on cylinders rather than on circles,so —, o higher average fields for any
: . _ given maximum field (price:
3. most of the signal is induced when the charge is close to the larger electrode capacitance)

electrode, where the electrode solid angle is large, so planar

signals are spread out in time as the charge arrives, and ——~ 3. 3D signals are concentrated
in time as the track arrives

4. Landau fluctuations along track arrive sequentially and may —, 4

. Landau fluctuations arrive
cause secondary peaks (see next slide)

nearly simultaneously

5. if readout has inputs from both n+ and p+ electrodes, ----""""" > 5. drifttime corrections can be
made
6. for long, narrow pixels and fast electronics, ~=-==------—_______ > 6 track locations within the
S.Parker pixel can be found
June 10, 2011 Silicon Detectors TIPP 2011 Carl Haber LBNL
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Examples of etching and coating with polysilicon.

An early test structure by

Julie Segal, etched and

coated (middle, right), =————
showing conformal nature

of poly coat.

An electrode hole, filled,

broken (accidentally) in a

plane through the axis,

showing grain structure

(below). The surface poly 290 pm
is later etched off.

June 10, 2011 Silicon Detectors TIPP 2011
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Alternate Materials

e Very active R&D effort for

>10 years e —

Band Gap |2V 5.5 33 1.12
— http'//rd48 Web cern Ch/RD4 Breakdown field [V /cm| 107 4x10% 3107
’ ’ : : Resistivity [{2-cm] = 104 1t 2.3 107
8/ Intrinsic Carrier Density [em | < 10° 151010

Electron Mobility [em?v—1s—1] 1800 80O 1350

Hole Mobility [em®v—'s71) 1200 115 480

o Most Work has been On Saturation *-,-"elﬁcitf.-' ks 220 200 g2

. . Mass Density [g cm =] 352 321 2.33

pCVD d|amond matenal Atomic Charge 6 14/6 14
Dielectric Constant 5.0 6.7 11.6

Displacement Enerzy eV /atom| 43 25 13-20

- S'gn |f|Ca nt |m provement In Energy to create e-h pair [eV] 13 8.4 36

Radiation Length [cm] 12.2 8.7 0.4

Cha rge CO“eCtlon Spec. lonization Loss [MeV /cm] 4rl -rzﬁ ‘zl

Awe. Signal Created /100 pm [g] 5100 BO00

® NeW results on Single Ave. Signal Created /0.1% Xg [g] :MEE 4400 8400

Low dielectric constant - low capacitance

crystal materials —but small S e G
+ Large ensrgy to create an eh pair - small signa
samples
e |[ssue of industrial capacity
vs silicon
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Harris Kagan

Characterization of Diamond.:

Signal formation

Charged Particle
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Cryogenic operation

e Palmieri et al (1998) 5 I o
recovery of lost CCE at i ki
cryogenic temperatures

1ae

e “Lazarus Effect” due to
freeze-out of traps

| =1 nfcm
{ 1O V')

(TCE (%)
o

e R&D activity centered at .
CERN (RD39)

e Practical difficulty for “low
mass” tracker if substantia I~
cryogenic engineering and o o ) :
infrastructure is required.

Sx 10" nfem” (250 V)

180
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Technology Development Shopping List

Radiation resistance of silicon and other solids

Radiation hard electronics — smaller feature size, larger IC’s
Signal processing and circuit design

Pixel architectures, monolithic and active pixel sensors
Alternative powering schemes. serial power, DC-DC conversion
Real time fast trigger processors

Large area and precision low mass mechanics

Alignment and survey technology (metrology, lasers, sensors)
Low mass electrical and mechanical components including discretes & substrates
Cooling technology — materials, coolants, delivery systems
Finite element thermal and mechanical simulations

Pattern recognition and data reduction methods

Reliability and redundancy methods

Large area, fine line, lithographic methods

Robotic methods for assembly and test

Wireless data transfer

Optical readout methods
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Real time momentum trigger

Half Pitch vs Momentum

=
o

Half Pitch Units (37.5
um)
P N W hd oo N 0O
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Momentum GeV

= See WIT2010
pub in JINST

ROC input charge signal Q from top or bottom detector

2 x DC coupled strip detectors o ot Qo2 .
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2 x 100 pitch with L] | bomds — p—
-chi / e | m:m zate
Hybrid S I L, I - \\._ spacer g I.
A 4 hd
: T T )
Horisberger R
1.5mm comelation
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Conclusions

e Huge progress ~30 years to build silicon
trackers using a broad suite of advanced
technologies

e Much significant science done, and to be
done, with these devices

e Progress in understanding and compensating
for effects of radiation over a range of 104

e R&D underway for next generation
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EXTRA SLIDES
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Multi-hit performance

e Binary response (hit or no hit), on pitch p, two hit separation
requires an empty element.
— Wide pitch = most hits are single element, separation = 2p
— Narrow pitch = double element hits, separation = 3p

* Analog response: can use local minima in a merged cluster

MEl
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Tracker
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Instrument Detector Technologies
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Lower Mass

e Large area and precision low mass mechanics

e Alignment technology (lasers, sensors)
— Drop stiffness requirements in favor of active monitoring and
feedback (lesson from the telescope builders).
e Low mass electrical and mechanical components including
discretes & substrates

— Power distribution schemes, serial power, DC-DC conversion, less
redundancy, grounding issues

— Technologies for hybrid circuits — thick, thin films, laminates

e Cooling technology — materials, coolants, delivery systems
— High thermal conductivity materials
— High pressure CO2
— Cooling integrated with FE electronics
— Reduced power consumption
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Trajectory

o Charged particle in a
magnetic field B=Bz

e 3D Helix : 5 parameters
C = half curvature
(1(sgn)/R)
Z, = offset
D = signed impact
parameter (distance of
closest approach)

Azimuth ¢ = angle of track
X = X0+ RC0s at closest approach

y=Y0+ Rein £ 0 = dip angle
z=20+ RAtan@
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Momentum Resolution

Simple case: Measure sagitta s of track with radius R, over projected
arc length L (cm, KGauss, MeV/c), assuming R>>L

0.3BR 0.3BL?> . L2 Ap 8pASs
= = usihgR=— = | — = .
cos¢  8scosd 8s P Jegia 0-3BL"COs@
where Ds is the error on the sagitta measurement. /
Effect of material: multiple scattering /
2 L2 Ap 52.8 | T
AS 2 _ O MCs — (_j _
(83) 16 3cos’ @ P Jucs Ba/LX,cC0s6
2 2 %
e
p TOTAL p saggita p MCS
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Effect of Material

(ﬁ] _ 8 pAS _._(D;eo';aplp Perror %
2 DN
p sagitta O.BBL COS 9 1000 N A I13:15 KG, Delia s=0.1 mm %
|L=100cm | ]
00 1
Ap 52.8 " z
i — X
P Jyes Ba/LX,cC086 2 10
2 2\, !
Ap Ap Ap [
—_ = | — +| — 0.1 - = 3
P TOTAL P saggita p MCS I
0.01 ! ] ]
*Minimize sagitta error o Lo G000 1000
*Maximize B,L
*Minimize material
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Vertex Resolution

X1, X2 = measurement planes
yl , y2 =measured points, with errors oy I\
y =a+bx

yl—y2 yl-y2
xL—x2  AX

a = intercept = %(y1+ y2)— %(yl— yz)(

b =slope =

a

@1 oy?2

2 2
(db)" = ( 8bj () + (a—bj (& = 0= 2¥ | |
= x1 X2
5a:@ 1+8—X
2 AX

for good resolution on angles (f and q) and intercepts (d, z, )

ePrecision track point measurements

eMaximize separation between planes for good resolution on intercepts

eMinimize extrapolation - first point close to interaction
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Effect of Material

X1, X2 = measurement planes
yl , y2 = measured points, with errors oy

oa = 5y 1+—
2 AX

for good resolution on angles (f and q) and intercepts (d, z, )
ePrecision track point measurements

x1

X2

eMaximize separation between planes for good resolution on intercepts

eMinimize extrapolation - first point close to interaction

eMaterial inside 15t layer should be at minimum radius (multiple scattering)
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