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~ v Multimessenger Astronomy

cosmic rays +
neutrinos
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+ gamma-rays

Gamma rays and
neutrinos should be
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sites of cosmic ray
acceleration




Neutrino Telescopes - Principle of Detection
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lceTop
81 Stations, each with 2

The IceCube Neutrino Observatory Chorenkoy dotector tarks

and 2 optical sensors per

IceCube Lab
- —_"_!-_.—‘;x? A

== = 324 total optical sensors.

o —&:’:.:: ...........

Completed | lceCube Array
| | 86 total strings, including 8
December 1 8’ 2010 | | DeepCore strings
| 60 optical sensors on each
string

5160 optical sensors

AMANDA-II Array
lceCube pre-cursor

1450m

A

DeepCore Array

8 strings with dense spacing optimized
for lower energies

480 total optical sensors

2450m

2820m

Digital Optical Module
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The lceCube Collaboration

36 institutions - 4 continents - ~250 Physicists
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lceCube module design specs

e Stable and reliable operation (minimal personnel at the South Pole and
modules are inaccessible)

e High dynamic range (deposited energy may vary by ~10°)
e Complex waveform information

¢ | ow power dissipation

June 11,2011 TIPP 201 I - Chicago IL Darren R. Grant - University of Alberta

7



lceCube module design specs

e Stable and reliable operation (minimal personnel at the South Pole and
modules are inaccessible)

e High dynamic range (deposited energy may vary by ~10°)
e Complex waveform information

¢ | ow power dissipation

Waveform Digitization for the entire detector

Each optical module becomes a semi-autonomous data acquisition
platform linked in an all-digital decentralized network

e The ice is a relatively quiet environment -> low information rate and need to
digitize only ~0.1% of the time
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The Digital Optical Module (DOM)

Cable Penetrator Assembly
\ PMT High Voitage Base Board

High Voltage Generator &
Digital Control Assembly

Flasher Board

Mu-Metal Magnetic Main Board
Shield Cage
Delay Board
Glass Pressure / -
Sphere
PMT
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Digital Optical Module Main Board Design
e Pulse waveform sampling: 300 MSPS

¢ \Wide dynamic range: 200 pe/10 ns
e Hit timing accuracy: 2 nsrms

e | ow dead-time: << 1%

¢ | ow power consumption: <56 W
Engineer: Jerry Przybylski, LBNL
e Adequate CPU and memory

¢ Built-in calibration, monitoring and debugging capabilities

e Remotely reprogrammable software and firmware.

Off-board interfaces: PMT Power and flasher boards.

Long lifetime, high reliability with optimized Goal: “as simple as possible”

June 11,2011 TIPP 201 I - Chicago IL Darren R. Grant - University of Alberta

10



Digital Optical Module Main Board Design

To adjacent DOMs
Local Coincidence FPGA

PMT + base Discriminators * *

* D—m Trigger |—
' Data Packetizer

Communications
Time Calibration

|
Y
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:
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Perspreresseneseanansd ADC| |DAC
Precision Clock DC:DC o ? @
Converter I
To Surface
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Digital Optical Module Main Board Design
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lceCube ATWD

e Adopted from Analog Transient Wave
Recorder (ATWR) designed by Stuart
Kleinfelder.

e Switched-capacitors = low power

-

4 input channels (3 for PMT signal and 1 for
calibrations etc), 256 samples per channel

¢ synchronous sampling: variable from
200-1000 MHz

e 10 bit S/N

fj j l ! ’ : ‘\\\\\ e For the ATWR there was no internal ADC and

readout was slow.

N
N
ey
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==
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e Solution: ATWD - 128 channel common-
ramp Wilkinson ADC added by Stuart.
Improved the readout speed greatly (Also
used for the KamLand experiment)
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DOM Mainboard
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DOM Flasher board

' Dan Wahl! (UW)
installs another
Flasher Board
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PMTs and pressure vessels

‘@élﬂlll | E e =

R7081-02 Hamamatsu (252mm) PI\/ITs
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lceCube Performance Parameters

DOM Level Detector level
- time resolution - angular resolution
- charge response - energy resolution
- Noise behavior - final sensitivity
- reliability

June 11,2011 TIPP 201 I - Chicago IL Darren R. Grant - University of Alberta
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DOM Time Resolution

Lab measurement with laser.

The time difference between 10°
neighboring DOMSs fired with
flasher pulses is ~1 ns

(including clock timing).
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DOM Sensitivity

2008 UW FAT Results

100 T
Standard DOMs
gol  Sigma/Mean = 0.068 ] High-QE DOMs
High QE DOMs
i | primarily used on
I~ 60 |- . Deep Core strings.
> i ] 1.35 times phototdetection
@) efficiency
O 40L -
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DOM Dark Noise

e Use of low-radioactivity glass for the
pressure spheres and good PMT
characteristics = very low noise rates.

e Average rate/sensor (including dead-time) =
286 Hz

e Sensor noise is stable and as expected.
(Gaussian timing distribution is due to
correlated hits from single DOM radioactivity

100

— Data
— - Gauss fit
----- Lognormal fit

| L e

80—

and fluorescence in the glass and from g®
multi-DOM cosmic-ray muons.) 5 g

§
z 85

e This is a critical parameter for high resolution g

of neutrino emission time profile of a galactic &
supernova core collapse. 75
70
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DOM Reliability

e ~14k years accumulated lifetime as of April 2011.

e 84 |lost DOMs (fail commissioning) during deployments and freeze-in

¢ 19 lost DOMs after successful freeze-in and commissioning.

Predicted 15-year DOM survivability
(post-deployment)
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lceCube Calibrations

-
"

e All sensors are equipped with a set
of 12 LED flashers.

e A 30 ns pulse of O(10°) photons at
400 nm are visible to a distance of
600 m.

. I

I

¢ The measurements are used to - |
calibrate the detector in time, |
geometry and optical properties of - _ SHEHEHEH U SR
the ice. BHEHH HEHEE I SN
HH Y BEHEBE B |

I

I

I

I

s LU eseme MITIS

June 11,2011 TIPP 201 I - Chicago IL Darren R. Grant - University of Alberta

22



lceCube Calibration

e Depth dependence of the ice is a challenge to analyze and the flasher measurements

have been crucial in the knowledge obtained thus far.

e Special color LED DOMs were deployed and their data is being analyzed to provide
multi-wavelength ice calibration.

e The deepest ice, below 2100 m, has better properties than expected making it an
excellent medium for particle detection.

Eff. Scattering length [m]

Absorption length vs Depth

Effective scattering length vs Depth
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lceCube Detector Performance - Angular Resolution

Median angular resolution

2.5 , ;
s |1C40
2.0 1eo—e |C86 |7
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o s : (Astropart. Phys. 20 507 (2004))
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eevent = Bmoon [deg]

lceCube Detector Performance - Angular Resolution

Cosmic Ray
Flux

Existence of the moon - confirmed!

¢ Likelihood analysis determines deficit of events from
direction of moon in the IceCube 59-string detector
confirms pointing accuracy.

¢ \alidates pointing capabilities with expected angular
resolution for IceCube 80-string detector <1”at1 TeV.

- 59 strings
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lceCube Detector Performance - Energy Resolution
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lceCube Detector Performance - Effective Neutrino Area

¢ The detector performance
parameters increase faster than the
number of strings

¢ This is an effect of longer muon
tracks providing improved angular
resolution (lever arm) and energy
reconstruction.

e |mproved analysis techniques and
new ideas (data quality, detector
modeling, background simulations)
underway will continue to push the
improvements for |C86.

June 11,2011
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Most Recently from IceCube...

Atm. neutrinos'
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The Neutrino Detector Spectrum

RA Accelerator
K2K,
T2 Energy < Volume
| | |
10 100 MeV I GeV 10 GeV 100 GeV | TeV 10 TeV ANITAI, EeV
RICE, Auger,
SN Super-K Gap AMANDA lceCube ARIANNA...
Solar/Atmospheric Atmospheric/AstrophysicaI
Dark
Matter 2
Appearance Non-accelerator based
Neutrino
Disappearance Mass
Hierarchy
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The Neutrino Detector Spectrum

Accelerator

Energy < Volume

|
100 MeV I GeV
Super-K lceCube
Solar/Atmospheric Atmospheric/AstrophysicaI
Dark
Matter
Appearance Non-accelerator based
Neutrino
Disappearance Mass
Hierarchy
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lceCube-DeepCore

¢ |ceCube extended its “low” energy response with a densely
instrumented infill array: DeepCore

¢ Significant improvement in capabilities from ~10 GeV to ~300 GeV (vy)

e Scientific Motivations:
¢ Indirect search for dark matter
e Neutrino oscillations (e.g., vr appearance)

e Neutrino point sources in the southern hemisphere (e.g., galactic center)

June 11,2011 TIPP 201 I - Chicago IL Darren R. Grant - University of Alberta
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DeepCore Design

Eight special strings plus seven
nearest standard IceCube strings

72 m inter-string horizontal spacing
(six with 42 m spacing)

7 m DOM vertical spacing
~35% higher Q.E. PMTs

~5x higher effective photocathode
density

Deployed mainly in the clearest ice,
below 2100 m

>\e1"f > ~50m

Result: 30 MTon detector with
~10 GeV threshold, will collect
O(200k) atmospheric v/yr

June 11,2011
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DeepCore Effective Area and Volume

g: Physical
o. Deep Core

S Volume
+ ~28 MT
L] L] v
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i R e
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Trigger: 23 DOMs hit in 2.5us;

Online Veto: No hits consistent with muons outside DeepCore volume
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DeepCore Atmospheric Muon Veto

e Overburden of 2.1 km water-
equivalent is substantial, but not as I
large as at deep underground labs AN ||||

e However, top and outer layers of
IceCube provide an active veto
shield for DeepCore

e ~40 horizontal layers of modules
above; 3 rings of strings on all sides

¢ Effective u-free depth much greater

¢ Can use to distinguish atmospheric p
from atmospheric or cosmological v

e Atm. p/v trigger ratio is ~10°

¢ \/etoing algorithms expected to reach
at least 10° level of background
rejection

June 11,2011 TIPP 2011

35



DeepCore Atmospheric Muon Veto

e Overburden of 2.1 km water- — = ‘ =
equivalent is substantial, but not as ] Muon flux vs overburden g
large as at deep underground labs 10° 4 Proposed NUSL Homestake ]

e However, top and outer layers of ] [
lceCube provide an active veto 5 ] [

. 1 — -
shield for DeepCore 3

e ~40 horizontal layers of modules by | IceCube Kamioka

above; 3 rings of strings on all sides z 10" 3 3

5 > Gran Sasso -

e Effective p-free depth much greater § ] i
=

. . : 10° 3 Homestake E

e Can use to distinguish atmospheric p : (Chiorine) Bh:';f:’élam :
from atmospheric or cosmological v ] IceCube/ i

.07 DeepCore veto Sudh

° . . . ~ 6 ::, u Ury -
Atm. p/v trigger ratio is ~10 3 DUSEL Homestake 3

¢ \/etoing algorithms expected to reach ] I
at least 10° level of background 10" - s
rejection 5 6 789 2 3 4 5 6 7889

10° 10*
Depth, meters water equivalent
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lceCube-DeepCore WIMP Sensitivity

0.05 < Q,h* < 0.20

MSSM model scan

—
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w
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e Solar WIMP dark
matter
searches probe
SD scattering
Cross section

F ----B---- IceCube (bb)
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- S . “IlceCube PRELIMINARY*

—_

o
&
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7

e S| cross section
constrained well
by direct search
experiments

Neutralino-proton SD cross-section (cm?)

e DeepCore will

G, < our CDMS(2010)+XENON100(2010)
G, < 0.001xc2" CDMS(2010)+XENON100(2010)

[ —8— IceCube (W'W, 1"t for m, <m,, = 80.4GeV)
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T
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10*

Neutralino mass (GeV)
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10_42 - guide the eye_) .
phase space 10 10°
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The Neutrino Detector Spectrum

Accelerator

K2K,
T2K
L

Energy < Volume

| | |
10 100 MeV | GeV | TeV 10 TeV ANITA. BV
RICE, Auger,
Solar/Atmospheric Atmospheric/Astrophysical

Non-accelerator based

The underground community is preparing programs for large-scale detectors O(300

KT),with physics focused on long-baseline neutrinos, toward O(1MT), proton decay,
supernova neutrinos.

Construction of the facilities for these detectors remain a technological challenge.

June 11,2011 TIPP 201 I - Chicago IL Darren R. Grant - University of Alberta
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PINGU - Phased lceCube Next Generation Upgrade

© [2011] The Pygos Group

.\

Accelerator

K2K,

TK Energy < Volume

L
| | |
10 100 MeV | GeV 10 | TeV 10 TeV ANITAI, V
RICE, Auger,
SN Super-K AMANDA IceCube ARIANNA. ...
. PINGU-I : Atmospheric/Astrophysical
SuperPINGU

. . - . Non-accelerator based
~70 active members in feasibility studies:

lceCube, KM3Net, Several neutrino experiments
Photon detector developers

Theorists

Darren R. Grant - University of Alberta
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PINGU - Possible detector configurations

e First stage (“PINGU-1”)

e Add ~20 in-fill strings to DeepCore to extend energy reach to ~1 GeV
¢ improves WIMP search, neutrino oscillation measurements, other low energy physics
¢ test bed for physics signals addressed by next stage

e Use mostly standard IceCube technology

¢ [nclude some new photon detection technology as R&D for next step

e Second stage (“SuperPINGU”)

¢ Using new photon detection technology, build detector that can reconstruct Cherenkov
rings for events well below 1 GeV

e proton decay, supernova neutrinos, PINGU-| topics

e Comparable in scope (budget/strings) to IceCube, but in a much smaller volume

June 11,2011 TIPP 201 I - Chicago IL Darren R. Grant - University of Alberta
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PINGU-I:
Possible Geometry

e Could continue to _ PINGU QOverhead (zoom 1)
fill in the DeepCore E | New
> ¢ PINGU-I
VOl U me Strings
* £.9., an additional p. P
18-20 strings (~1000 DOMs) 438
J39 g3 n

in the 30 MTon J40 g% 3%

DeepCore volume ' J28 Existing
Jse g4 o J23343  J53 DeepCore
i 330 Stri
e Could reach O(GeV) 5 /:“ 9% (and Srings)
_ . .

threshold in inner

10 MTon volume Existing | \ _é
IceCube )0 . \ I

Standard | | & =

Strings . D é

50k e g

-50 0 50 100 150
X (m)
e Price tag would likely be around $25M
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PINGU-I Physics

Probe lower mass WIMPs

Gain sensitivity to second oscillation peak/trough

o will help pin down (Amag)?

Mena, Mocioiu & Razzaque, Phys. Rev. D78, 093003 (2008)

N

e enhanced sensitivity to neutrino mass hierarchy N

hierarchy
(sin?(2613)=0.1)

Gain increased sensitivity to supernova neutrino bursts o8

e [Extension of current search for coherent increase in

singles rate across entire detector volume % 06
[~
e Only 2+1 core collapse SN/century in Milky Way %
[=1
® need to reach out to our neighboring galaxies § 04
Gain depends strongly on noise reduction via coincident %’ i

photon detection (e.g., in neighbor DOMS)

IIIIITTNIL,P'TI"-.I\ITT‘IIIIIITIT}IIIIIITTI

v, appearance

N \/u—\"'l

v, disappearance

50

Begin initial in-situ studies of sensitivity to proton | i
decay ! ! | n
. . . O5 10 15 20 25 30 35
Extensive calibration program E, [GeV]
Pathfinder technological R&D for SuperPINGU
June 11,2011 TIPP 201 I - Chicago IL Darren R. Grant - University of Alberta
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SuperPINGU Conceptual Detector

e O(few hundred) strings of “linear”
detectors within DeepCore fiducial
volume

e (Goals: ~5 MTon scale with energy
sensitivity of:

e O(10 MeV) for bursts
e O(100 MeV) for single events

¢ Physics extraction from
Cherenkov ring imaging in the ice

¢ |ceCube and DeepCore provide
active veto

June 11,2011 TIPP 201 I - Chicago IL
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SuperPINGU Conceptual Detector

e O(few hundred) strings of “linear”
detectors within DeepCore fiducial
volume

e (Goals: ~5 MTon scale with energy

sensitivity of:

e O(10 MeV) for bursts

v coordinate m]
(=]

N2
<t

T .

e O(100 MeV) for single events

¢ Physics extraction from
Cherenkov ring imaging in the ice

¢ |ceCube and DeepCore provide
active veto
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SuperPINGU Detector R&D

Composite Digital Optical Module

e (Glass cylinder containing 64 3” PMTs
and associated electronics

¢ Effective photocathode area >6x
that of a 10” PMT

e Diameter comparable to lceCube
DOM so (modulo much tighter
vertical spacing) drilling requirement
would also be similar

¢ Single connector

e Might enable Cherenkov ring imaging in
the ice

June 11,2011 TIPP 201 I - Chicago IL

Courtesy E. de Wolf & P. Kooijman

Possible

design for
SuperPINGU:
64 x 3” PMTs

250mm
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Summary

¢ |ceCube completed construction in December 2010 on schedule and within budget.

Nuclear Instruments and Methods in Physics Research A 601 (2009) 294-316

It is now has sensitivity to
neutrinos of all flavors in a very wide energy range (10 GeV to 10° GeV) in both

e The detector is exceeding the initial performance goals.

hemispheres.

e Operation of the sensors show very stable running and the hardware technology show
very good reliability with very few failures per year expected for the full IceCube data

operation.

e |ceCube is just entered its era of highest
sensitivity running. Active development
underway for improvements of the
performance parameters.

e Toward the distant future, South Pole ice
may be prove to be an attractive
alternative for large-scale precision
neutrino detectors. Simulations for
feasibility studies underway - stay tuned!

June 11,2011 TIPP 201 I - Chicago IL
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