R&D for the Observation of Coherent Neutrino Scatter at a Nuclear Reactor with a Dual-Phase Argon Ionization Detector

Samuele Sangiorgio

on behalf of
A. Bernstein, C. Hagmann, K. Kazkaz, S. Pereverzev (LLNL)
M. Foxe, I. Jovanovic (PSU)
T. Joshi (UCB)
J. Coleman, K. Mavrokoridis (U. Liverpool, UK)
Predicted but hard to see

Coherent Neutrino Scattering (CNS) is a neutral current process where an incoming neutrino elastically scatters on a nucleus

- flavor blind
- predicted by the SM
- enhanced cross-section:

\[
\sigma_{cs} \sim \frac{G^2 N^2}{4\pi} E^2_{\nu} \\
\approx 0.42 \times 10^{-44} N^2 \left(\frac{E_{\nu}}{\text{MeV}} \right)^2 \text{cm}^2
\]

- low recoil energy:

\[
\langle E_r \rangle = 716 \text{ eV} \frac{(E_{\nu}/\text{MeV})^2}{A}
\]

Drukier and Stodolsky, PRD 30(11), 1984.
Where to look for Coherent ν Scattering

- Solar neutrinos
- Neutrino beams
- Supernovae
- Nuclear Reactors

Reactors are an attractive source of neutrinos for CNS investigation:
- High flux ($\Phi > 10^{12}$ cm$^{-2}$s$^{-1}$)
- Energies up to \sim10 MeV
- Allow for relative measurement when reactor is off for refueling

Average recoil energy of Ar from reactor neutrinos is \sim 240 eV !!

Coherence condition

$$\lambda_\nu \gg R_{\text{nucleus}} \sim 1.25 \text{ fm } A^{1/3}$$

Argon Nuclear Recoil Spectra from Typical Power Reactor

(*) at \sim 25 m from a 3-GWt core with typical fuel composition
Dual-phase Noble-element Detectors

- Well known technology, extensively used for Dark Matter
- Good electron drift properties
- Large mass
- Low thresholds
- Scalability

- Argon
- Xenon

How many primary electrons are produced by a nuclear recoil?
Ionization Yield of Nuclear Recoils

- Nuclear recoils are less effective than electron recoils in producing ionization.
- Experimental data for LXe for nuclear recoils down to 4 keV.
- No data for Ar, only MonteCarlo.

We want to measure the ionization yield of nuclear recoils in LAr.

Nuclear ionization quench factor:

\[q(E_r) = \frac{N_{ion}(E_r, \text{nucleus})}{N_{ion}(E_r, \text{electron})} \]

Ionization yield in LXe

Simulated ionization spectrum from reactor neutrinos

\(\sim 30\% \)

Number of primary electrons

CNS and Dark Matter detectors

Coherent scatter detection

- Nuclear recoils < 5 keV
- Little to no S1 (primary) light
- Little or no overburden
- ~10 event per kg per day
- 10-20 kg active mass
- Modest purity: electron drift of 0.2-0.5 m
- Robust, easy to operate and to interpret
- Neutrino source can be turned off for various reactor designs

Dark Matter

- Nuclear recoils < few tens keV
- S1/S2 provides particle ID
- 100-5000 m.w.e. overburden
- ~1 event per 100 kg per month *
- Current generation is 100 kg or larger
- High purity Electron drift of 1-2 m
- Simplicity a secondary consideration
- No off switch for Dark Matter

Unique to monitoring

Unique to dark matter

(*) assume $\sigma = 1 \times 10^{-45}$ cm2 for a 100-GeV WIMP on Xe
Dual-phase Ar Ionization Detector

Compact and movable design

- cryocooler head
- cryogenic dewar
- circulation pump
- flow control
- cryocooler cooling system
- gas purifier
- Argon gas
- Slow control
- DAQ
Dual-phase Ar Detector Guts

- In-situ Liquid Ar production w/ cryocooler
- Primary region volume: ~ 200 g LAr
- TPB as a wavelength shifter
Dual-phase Ar Detector Cryogenic

- Automatic cool-down and liquefaction in less than ~ 20 h
- Temperature stability ± 0.05 K
- Continuous purification of Ar 2-3 times per day
- Low-power cryocooler with variable cooling power

- Sensitive liquid level tilt sensor

![Graph showing the dielectric constant between capacitor plates with time.](image)

- Locate liquid level accurately above the drift region
- 1.9 mm gap between capacitor plates
- All liquid
- No liquid
Dual-phase Ar Detector High Voltage

- Gas Argon has poor dielectric properties
- Needs careful design of feed-throughs that are reliable and compatible with high-vacuum requirements
- Current setup needs 30 kV max. Future designs may require >100 kV

Present design:
- Feed the HV cable directly in to the cryostat space using a quick-disconnect coupling (o-ring seal)

Pros: easy to setup
Cons: feed-through not UHV compatible; not scalable; high heat load

Proposed design:
- Bring feed-through in the liquid

Pros: UHV-compatible
Cons: bulkier and semi-rigid
First light!

- Only a single 1” PMT
- Poor light collection efficiency
- No Ar recirculation
- Low E fields (~ 4 kv/cm in gas)
- External γ source

Exponential decay constant typical of Ar scintillation
For pure Ar: \(\tau_2 \sim 3.2 \mu s \)

Distribution of fitted decay time

Secondary scintillation induced by electrons accelerated in gas
First light!

- Only a single 1” PMT
- Poor light collection efficiency
- No Ar recirculation
- Low E fields (~ 4 kv/cm in gas)
- External γ source

Proportionality of light output with energy

Raw spectra of 137Cs and 60Co

137Cs
Compton edge
~ 480 keV

60Co
Compton edge
~ 990 keV
Detector calibration with 37Ar

Provides low-energy uniform calibration throughout the whole detector volume

Decay scheme
- 100% electron capture
- $t_{1/2} = 35.04$ d
- $Q(gs) = 813.5$ keV

Decay radiation
- K-electron capture 2.82 keV (90.2%)
- L-electron capture 0.27 keV (8.9%)
- M-electron capture 0.02 keV (0.9%)

Isotope production
- Produced by neutron irradiation of natAr at a nuclear reactor

Fig. 4. Proportional counter energy spectra. When the counter was loaded with the 37Ar sample, the 241Am calibration source was re-oriented resulting in a change in the intensity of the Cu K-shell X-ray peak. Inset shows the half-life decay of the 37Ar peak intensity.
Using a 1.93 MeV proton accelerator, neutrons are generated up to an energy of 135 keV through the $^7\text{Li}(p,n)^7\text{Be}$ reaction.

The neutrons interact primarily within the 80 keV resonance of ^{40}Ar, producing recoils with an energy of up to ~8 keV.

\[
T_{\text{Ar}}^{\text{MAX}} = \frac{4mM}{(m + M)^2} E_n
\]

• End point measurement
• Backgrounds
 – gamma from $^7\text{Li}(p,p')^7\text{Li}$
 – gammas from neutron capture
 – measured by running the proton beam below the neutron-generating threshold and below the 80 keV resonance
• Full simulation ongoing

Simulated spectrum from neutron interaction in detector assuming quench factor for nuclear recoils = 0.2

assuming nuclear recoils equal to electron recoils
Ionization Yield Measurement using NRF

• Novel technique
• Will give actual energy peak, not just an end-point measurement
• 60 hours of beam time has been awarded by HIγS external Program Advisory Committee
• Allow to investigate sub-keV recoil energies

Recoil energy

\[E_{NR} = \frac{2(E_r \sin(\theta/2))^2}{Mc^2} \]

Resonance energy (for Ar: 4.8 MeV & 9.8 MeV)

Argon mass

arXiv:1105.5156
A 10kg Detector for Reactor Monitoring

• Performed preliminary design study for a 10-kg liquid/gas Argon detector

• Stringent technical requirements
 – small footprint
 – movable
 – modular design for installation in hard-to-get locations
 – limited electrical power
 – very limited network access for remote control and operation
 – limited time access for operators
 – no ready access to liquid cryogens
 – shallow depth → shielding
 – safety
 – limited air circulation and no air conditioning
 – harsh environment: dust, humidity, noise, vibrations

• Assuming 100% efficiency in detecting single primary electrons, we expect to see ~ 170 events/day (for ν flux of 6x10^{12} cm^{-2} s^{-1})

• If signal follows reactor outages, we have confirmation of signal → first observation ever of CNS!
Conclusions

- Dual-phase noble-element detectors - the technology that is successfully being used for Dark Matter - could be extended to detected **Coherent Neutrino Scattering**

- We are developing a **LAr detector** that will be sensitive to nuclear recoils in a currently inaccessible energy range

- Measurement of the **nuclear ionization yield** is critical and we have plans for
 - Neutron measurement at 8 keV recoils
 - Novel NRF technique to probe sub-keV nuclear recoils

- Upon successful deployment of the small prototype, we will develop a larger detector to **search for CNS at a nuclear power plant.**
Backgrounds

- All processes that produce a small number (1-5) of primary electrons in the active region:

10 kg Ar, 25 m standoff, 3.4 GWt Signal:

<250 eV> nuclear recoil energies for <4 MeV> neutrino energies
→ after quenching: 1-10 free e-
→ ~200 per day (1 or more liquid e-)

radioactive backgrounds

<table>
<thead>
<tr>
<th>Background type</th>
<th>counts/ dy/10 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant: (^{39})Ar</td>
<td>1000</td>
</tr>
<tr>
<td>(sim.; depleted Ar reduces 20x)</td>
<td></td>
</tr>
<tr>
<td>Internal gammas:</td>
<td>~ 50 per day @ 3 keVee; but ~1 Hz of single liquid electrons</td>
</tr>
<tr>
<td>(measured, XENON10):</td>
<td></td>
</tr>
<tr>
<td>External U/Th/K:</td>
<td>~ 100</td>
</tr>
<tr>
<td>(sim., after 2 cm Pb shield)</td>
<td></td>
</tr>
<tr>
<td>External neutrons:</td>
<td>~ 32</td>
</tr>
<tr>
<td>(sim. @ 20 mwe, after 10 cm borated poly shield):</td>
<td></td>
</tr>
</tbody>
</table>

Monte Carlo Simulation

Rates in plot simulated@ 20 mwe

spontaneous single-electron signals

- field emission of electrons
- emission from surface of liquid
- others?

fiducialization of active volume and good discrimination between events with 1 and 2 primary electrons
Experimental Program - Overview

- **Single-phase detector**
 - Understand the gaseous region of the proposed dual-phase detectors
 - Kazkaz et al, NIM A 621, 2010

- **Small (~200 g) dual-phase detector**
 - Study the ionization yield of nuclear recoils in liquid argon
 - Develop an understanding of dual-phase detector design and operation

- **Large (10 kg) dual-phase detector**
 - Deployment at a reactor
 - Look for variation of CNS signal due to outages
 - Detection of CNS!
Detector for Reactor Monitoring

- To be sited at a nuclear power plant (e.g., the San Onofre Nuclear Generating Station)
- Assuming 100% efficiency in detecting single primary electrons, we expect to see ~170 events/day (for ν flux of 6×10^{12} cm$^{-2}$ s$^{-1}$)
- If signal follows reactor outages, as it has been done with Gd-doped liquid-scintillators, we have confirmation of signal → first observation ever of CNS!

SONGS antineutrino detector inverse β decay on liquid scintillator

from nrc.gov
Single-phase Detector

- Understand detector systematics
- Develop the data acquisition and analysis tools
- Specs:
 - 400 Torr Ar / 6 Torr N₂
 - continuous gas purification
 - 0.333 kV/cm drift region
 - 2 kV/cm gain region
 - ⁵⁵Fe source (5.9 keV X-ray)

More ongoing:
 - Fiducialization studies
 - Secondary scintillation at high gas density
 - Understand pulse shape
 → K. Kazkaz N01-5

More in Kazkaz et al, NIM A 621, 2010
A particle scatters off a nucleus

\[e^- \text{ drifted through the gas producing secondary scintillation (S2) (~3 \, \mu s)} \]

\[e^- \text{ drift up, through the liquid and into gas (few \, \mu s)} \]

Recoiling nucleus ionizes surrounding medium and prompt scintillation (S1) produced (1-1000 ns)

Noble elements are used for their drift properties

Light detected by PMTs
Noble Gases Properties

<table>
<thead>
<tr>
<th></th>
<th>He</th>
<th>Ne</th>
<th>Ar</th>
<th>Kr</th>
<th>Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic number</td>
<td>2</td>
<td>10</td>
<td>18</td>
<td>36</td>
<td>54</td>
</tr>
<tr>
<td>Boiling point [K]</td>
<td>4</td>
<td>27</td>
<td>87</td>
<td>119</td>
<td>165</td>
</tr>
<tr>
<td>Liquid phase density [g/cm^3]</td>
<td>0.145</td>
<td>1.2</td>
<td>1.4</td>
<td>2.4</td>
<td>3.06</td>
</tr>
<tr>
<td>Radioactive isotopes</td>
<td></td>
<td>39Ar</td>
<td>85Kr</td>
<td></td>
<td>136Xe ?</td>
</tr>
<tr>
<td>Price [$/ft^3]</td>
<td>50</td>
<td>2500</td>
<td>20</td>
<td>25000</td>
<td></td>
</tr>
<tr>
<td>Scintillation light [nm]</td>
<td>80</td>
<td>128</td>
<td>147</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Electron drift velocity in liquid @ 1 kV/cm [mm/µs]</td>
<td></td>
<td>2.1 [ref 1]</td>
<td>~ 2.7 [ref 2]</td>
<td>~ 2 [ref 2]</td>
<td></td>
</tr>
<tr>
<td>Ionization energy (liquid) [eV]</td>
<td>25.5</td>
<td>21.5</td>
<td>23.7 [ref 3]</td>
<td>20.5 [ref 3]</td>
<td>16.4 [ref 3]</td>
</tr>
</tbody>
</table>