SLID-ICV Vertical Integration Technology for the ATLAS Pixel Upgrades

L. Andricek, M. Beimforde, H.G. Moser, R. Nisius, R.H. Richter, P. Weigell

Max-Planck-Institut für Physik & MPI Halbleiterlabor (HLL)

Munich

© Fraunhofer EMFT / Bernd Mueller

Technology and Instrumentation in Particle Physics 2011, Chicago, 9-14 June 2011

Benefits of vertical integration technology for HEP

MPP 3D R&D Program: demonstrator module

Step I:

- ASIC thinned to 200 µm
- n-in-p pixel sensors of 75 μm active thickness
- thin sensors / ASIC interconnection using SLID
- No TSV, integrated fan-out on sensor for service connection

Step II:

- •TSV etched in the read-out chip on the front-side on every wire bonding pad to route signal and services to the ASIC backside
- ASIC thinned to 50 μm
- thin sensors /ASIC interconnection using SLID

MPP 3D R&D Program: demonstrator module

Step I:

- ASIC thinned to 200 µm
- n-in-p pixel sensors of 75 μm active thickness
- thin sensors / ASIC interconnection using SLID
- No TSV, integrated fan-out on sensor for service connection

Step II:

- •TSV etched in the read-out chip on the front-side on every wire bonding pad to route signal and services to the ASIC backside
- ASIC thinned to 50 μm
- thin sensors /ASIC interconnection using SLID

MPP 3D R&D Program: demonstrator module

Step I:

- ASIC thinned to 200 μm
- n-in-p pixel sensors with 75 μm active thickness
- thin sensors / ASIC interconnection using SLID
- No TSV, integrated fan-out on sensor for service connection

Step II:

- TSV etched in the read-out chip on the front-side on every wire bonding pad to route signal and services to the ASIC backside
- ASIC thinned to 50 μm

Thin pixels for the ATLAS pixel Upgrade

- ATLAS pixel system for the Phase 2 Upgrade: In the inner layers radiation doses of 1-2x10¹⁶ n_{eq}/cm² are foreseen
- Higher electric fields in thinner devices at equal V_{bias}: at HL-LHC fluences higher CCE is expected (larger drift velocity, charge multiplication)
- Minimize material and multiple scattering

Charge collection efficiency measured with thin p-type strip sensors produced by MPP-HLL – Alibava read-out system

A. Macchiolo et al. http://dx.doi.org/10.1016/j.nima.2010.11.163

Charge [ke

$\Delta_{p}.\Delta_{g} \geqslant \frac{1}{2}t$

Sensor thinning technology at MPP-HLL

sensor wafer

handle wafer

- implant backside on sensor wafer
- bond sensor wafer to handle wafer
- thin sensor side to desired thickness
- 4. process on top side

- structure resist, etch backside up to oxide/implant
- ➤ The process has been completed including step #4. The handle wafer has been used as a support during the ASIC interconnection phase. Backside etching demonstrated in other productions

- Production characteristics:
- 8 n-in-p 6" wafers with ATLAS FE-I3 compatible sensors
- Different active thicknesses: 75µm and 150µm
- Pre-irradiation characterization:
 - Excellent device yield (79/80)
 - Low currents (~10 nA /cm²)
 - Good breakdown behaviour (V_{bd} >>V_{fd})

Sensor thinning technology at MPP-HLL

sensor wafer

handle wafer

process

- implant backside on sensor wafer
- bond sensor wafer to handle wafer
- thin sensor side to desired thickness
- on top side etc to

➤ The process has been completed including step #4. The handle wafer has been used as a support during the ASIC interconnection phase.

EMFT SLID Process

Metallization SLID (Solid Liquid Interdiffusion)

- Alternative to bump bonding (less process steps "lower cost" (EMFT)).
- Small pitch possible (~ 20 μm, depending on pick & place precision).
- Stacking possible (next bonding process does not affect previous bond).
- Wafer to wafer and chip to wafer possible.
- However: no rework possible.

EMFT SLID Process

Metallization SLID (Solid Liquid Interdiffusion)

Formation of **Eutectic Alloy**; T_{melt} > 600 °C

- Alternative to bump bonding (less process steps "lower cost" (EMFT)).
- Small pitch possible (~ 20 μm, depending on pick & place precision).

~ 5 bar, 260 - 300 °C (Sn-melt)

- Stacking possible (next bonding process does not affect previous bond).
- Wafer to wafer and chip to wafer possible.
- However: no rework possible.

Daisy chains: wafer-to-wafer SLID

- Aim: determine the feasibility of the SLID interconnection within the parameters we need for the ATLAS pixels.
- > SLID efficiencies measured with daisy chains structures (wafer to wafer connections).

Pad width [µm²]	Pitch [µm]	Aplanarity	SLID Inefficiency
30x30	60	0	<1.2x10 ⁻⁴
80x80	115	0	<8.9x10 ⁻⁴
80x80	100	0	<7.8x10 ⁻⁴
27x60	50,400	0	(5±1) x10 ⁻⁴
30x30	60	100 nm	(10±4)x10 ⁻⁴
30x30	60	1 µm	(4±3) x10 ⁻⁴

A. Macchiolo et al. "Application of a new interconnection technology for the ATLAS pixel upgrade at SLHC"

http://cdsweb.cern.ch/record/1234896/files/p216.pdf

Chip to wafer SLID interconnection (with handle wafer)

The chips on the handle wafer suffer from strong misalignment with respect to the nominal positions.

Chip to wafer SLID interconnection (with handle wafer)

After SLID interconnection and handle wafer removal

Chip to wafer SLID interconnection (with handle wafer)

FE-I3 chips (mostly not electrically functioning) used to improve the pressure homogeneity on the wafer during the SLID interconnection

Measured misalignment

Residual misalignment in 🛨 after correction for a global offset of the FE-I3 chips

Chip	3	4	5	6	7	8 9	10	Pad size	Di <mark>st</mark> ance
Δ x [μm]	-23	44	-34	-8	-16	-17 -17	-16	27	23
Δy[μm]	-34	73	-58	-19	-18	-25 - <mark>2</mark> 1	-25	60	29
Tilt [º]	-0.38	0.72	-0.61	-0.21	-0.21	-0.23 -0 <mark>.</mark> 24	-0.26		

- 5 modules with a misalignment and tilt that do not induce shorts or open, included the area in the corners
- Very good alignment for the SLID pads in the central region of the FE-I3 matrix

SLID Module measurements

- SLID modules glued and wire-bonded to a modified version of the ATLAS pixel detector board (Bonn University)
- Measurements performed with the ATLAS USBPix read-out system

Overview of the 5 SLID modules tested

- The five sensors and the chips are all functional
- Chips can be tuned with a small threshold dispersion (except SLID7)
- Leakage current at 50 V ~ 25 nA (above Vdepl=40V)
- 90Sr source scan performed for all the modules

1 Ap. Ag > 1/2 th

Tuning of Module SLID10

Threshold tuned to 2800 e-

 Modules can be tuned with a small threshold dispersion in the range 2500-3500 e-

 Noise value comparable to n-in-p SCMs connected by bump-bonding (~170-190 e⁻)

$\Delta_{p}.\Delta_{q\geqslant \frac{1}{2}}t$

SLID Module 10: 90Sr Source Scan

- All channels connected and functional
- Collected Charge with ⁹⁰Sr: compatible with the signal from bump-bonded n-in-p module, 300 um thick, after scaling for the active thickness

Dp. Dq≥½t

SLID Module 9: Charge Collection

- Number of unconnected channels ~ 6%
- The module is fully functional except for the fraction of disconnected channel
- Similar results for SLID8-SLID7-SLID6 with an increasing number of unconnected channels.

Overview of the SLID interconnection efficiency

Not connected channel

Observations about the disconnected channels

Chip	Discon. Pixel	%
6	731	30
7	713	29
8	274	11
9	134	6
10	0	

- Number of disconnected channel growing towards the center of the wafer
- Pattern of disconnected channels shows that the chip misalignment cannot be the only cause.

Pull test with "mechanical" FE-I3 chips placed below the hot pixels

Connection strength – Pull out tests

Possible causes of the SLID inefficiency

- ■The FE-I3 chip wafer has been thinned down to 200 um at EMFT before electroplating
- Differences in the chip heights (1-2 μm) could induce lack of homogeneity in the applied pressure.
- •The hot chips were chosen from neighboring positions to minimize the height spread
- Not perfect openings in the BCB sensor passivation observed in some regions of the pixel sensors before SLID electroplating

10p.09=1t

Possible causes of the SLID inefficiency

- ■The FE-I3 chip wafer has been thinned down to 200 um at EMFT before electroplating
- Differences in the chip heights (1-2 µm) con/d induce lack of homogeneity in the applied pressure.
- The hot chips were did son from the horing positions to minimize the period

• Not perfect openings in the BCB sensors before SLID electroplating

Trough Silicon Vias processing

Etching (Bosch process) on FE-I3 8" wafers. 60 μm deep TSVs with lateral dimensions of 3 x 10 μm²

Insulation, filling with tungsten

Electroplating, metallization on the ASIC front side

Back thinning to expose the TSV, backside isolation

Electroplating, metallization on the ASIC back side

Trough Silicon Vias processing

$A_{p} \cdot \Delta_{q \geqslant \frac{1}{2}t}$

TSV in the FE-I3 chips

- > First etching trials on dummy wafer
- *****
- Performed in the un-thinned FE-I3 chips of one designated test-wafer
- Etched to a depth of ~ 69 μm
- Optimize the trench width to obtain the same depth as in the TSV
- Process plan of the hot FE-I3 wafer
- Local planarisation of the fan-out pads by depositing and etching of SACVD-Oxide

 Perform via etching and filling in the hot FE-I3 wafer

Connect the readout chip with SLID to the hot sensor wafers

Summary and Outlook

- FE-I3 modules functional after SLID Interconnection, with extremely good performance (low noise, threshold dispersion, charge collection)
 - Problems with chip alignment on the handle wafer
- Systematic loss of SLID connection efficiency for a fraction the modules close to the wafer center → reasons under investigation, probably not related to the interconnection technology

Plans

- Irradiate some of the SLID modules to study the radiation hardness of the technique
 - Optimize pick and place of the chips on handle wafer with new machines
 - Full SLID assembly of sensors and FE-I3 chips with TSV

Back-up Slides

SLID Module 9: chip tuning

Pixel with lower noise are an indication of unconnected channels

Jap. Ag≥ ½t

Connection map of SLID 7 module

Possible causes of SLID inefficiency – BCB openings

BCB passivation not completely open?

New daisy chain production for SLID testing

- FE-I4 geometry, daisy chains with 26800 pads each
- Arranged in the most regular pattern possible
- Test of the placement on the handle wafer with new flip-chipping machine at EMFT
- SLID efficiency with measurements of the electrical continuity

•EMFT can do the copper electroplating in house, tin will be available in October (subcontracted to IZM Berlin in the past).

$A_{p} \cdot \Delta_{q \geqslant \frac{1}{2}} t$

CCE Measurements (I)

- ➤ CCE measurements on irradiated n-in-p strips, from the same production, are ongoing with the ALIBAVA system.
- The strip sensors used in these measurements have the same structure as the pixels (punch-through biasing, DC coupling) with the exception of the length (~ 7 mm)

CCE measurements on pixels are only possible after SLID interconnection of sensor and FE-I3 (in preparation, see next slides).

150 μ m thick, Φ =3E15 n_{eq} /cm², V_{bias}=650 V

$A_{p}.\Delta_{q\geqslant \frac{1}{2}}t$

Possible causes of SLID inefficiency – BCB openings

Region of a FE-I3 sensor (before SLID electroplating) with "strange" looking BCB openings

