

# Theory and Application of Transmission Mode Metal (Aluminum) Photocathode

Seon Woo Lee<sup>1</sup>, Klaus Attenkofer<sup>1</sup>, Dean Walters<sup>1</sup>, Marcel Demarteau<sup>1</sup>, Henry Frisch<sup>1,2</sup>, Junqi Xie<sup>1</sup>, Zikri Yusof<sup>1</sup>

1. Argonne National Laboratory

2. University of Chicago

Saturday, June 11, 2011



#### Contents

- Motivation
- Theory: physics of photoemission from transmission mode metal cathodes
- Approach :
  - Model development to predict QE(E<sub>Ph</sub>)
  - Design and grow of test cathodes to verify QE model
  - Use test cathodes to "calibrate" optical characterization tools
- Conclusion & Future Plan



#### **Motivation**

- Motivation for metal transmission photocathode
  - Stability in air
  - Externally producible
  - Robust, long life time.
  - Easy to fabricate



- Scientific interest
  - Ultra fast timing response ( ~ femto seconds)



## Theory: Physics of Photoemission from Transmission Mode Metal Cathodes -The Three-Step Photoemission model



Direction normal to surface

- 1. Reflection / Optical absorption
- 2. Transport of the excited electron to the surface (electron may lose energy during this process)
- 3. The escape of the electron across the surface into vacuum.

#### Theory: Physics of Photoemission from Transmission Mode Metal Cathodes

- Reflection from the surface / Optical Absorption
  - Aluminum is good reflector
  - Thickness of Al for transmission mode cathode must be in the order of skin depth.
  - Work function of aluminum is 4.08 eV (~303.88 nm)

#### Skin Depth of Aluminum at 300 nm is 2.6 nm.

$$\delta = \sqrt{\frac{\rho}{\pi \times f \times \mu}} = \sqrt{\frac{2.65 \times 10^{-8} \,\Omega \cdot m}{\pi \times (9.9931 \times 10^{14} \,\frac{1}{s}) \times (4\pi \times 10^{-7} \,\frac{H}{m}) \times (\frac{\Omega s}{H})}}$$

$$=2.6\times10^{-9}m=2.6nm$$

ρ = resistivity (Ω·m)

 $\mu$  = permeability (4 $\pi$ \*10<sup>-7</sup> H/m), note: H = henries =  $\Omega$ \*s



## Theory: Physics of Photoemission from Transmission Mode Metal Cathodes

- Energy dependence of quantum efficiency



#### Model simplifications:

- Electron is considered as "free" electron; arbitrary angle distribution independent from E<sub>ph</sub>
- Kinetic energy normal to surface is larger than work function
- All other electrons are neglected



#### Theory: Physics of Photoemission from Transmission Mode Metal Cathodes

- Electron Escape Depth

#### **Thermalization**



Scattering probability depends (Fermi's Golden Rule):

- Density of states (occupied and non occupied)
- Matrix element (neglecting energy dependence)

Mean-free path of Al is approximately <u>15 nm</u> at room temperature Thin Solid Films, 121 (1984) 201-216



#### **Electron escapes if**

- Kinetic (normal to surface) energy is larger than barrier
- Limited tunneling probability for lower kinetic energy

#### Simplification:

Only electrons within the slice of 1 mean free path length are considered

## Approach: Model development to predict QE(Eph)

#### Implementation of Model

- Reflection loss / Optical absorption
- Work function of the metal
- We are neglecting Schottky effect (e-h interaction)
- Penetration depth / mean free path
- Kinetic energy distribution depends on occupied and unoccupied
   DOS (Fermi Golden Rule)
- Escape depth assuming mean free path length

#### Method

- Simple model based on three step Spicer model
- Microscopic theory (Ab-initio) can be easily implemented
- Allows to correlate transmission and reflection behavior





- Optical Absorption

How much light will be <u>transmitted</u> through window material:

$$T = \frac{I}{I_0} = 10^{-\alpha \ell}$$







#### - Optical Absorption



How much light will be <u>absorbed</u> into metal:

$$A_{\lambda} = \log_{10}(I_0/I)$$

| Film thickness (Å) | A % | R %  | T % |
|--------------------|-----|------|-----|
| 40                 | 7   | 19   | 74  |
| 80                 | 10  | 43   | 47  |
| 120                | 11  | 62   | 27  |
| 160                | 10  | 74   | 16  |
| 200                | 9.4 | 81.5 | 9.1 |
| 240                | 8.9 | 86.0 | 5.1 |
| 280                | 8.5 | 88.4 | 3.1 |
| 320                | 8.2 | 90.0 | 1.8 |
| 360                | 8.1 | 90.9 | 1.0 |
| 400                | 8.1 | 91.4 | 0.5 |
| 500                | 7.9 | 92.0 | 0.1 |



- Fermi Golden Rule: Optical Absorption





- ⇒ distribution function for Kinetic energy of the electron
- ⇒ distribution function can be calculated using Fermi's Golden Rule
- ⇒ Influence of materials properties (Density of states)

#### **Approach**: Model development to predict **QE(EPh)**

- Electron escape probability



Electron Escape Probability for given Energy:

$$\phi < E_{nor}^{kin} = E^{kin} * \cos(\alpha)$$
 $\phi \le E_{kin} \cdot \cos \alpha$ 

$$\frac{\phi}{E_{kin}} < \cos \alpha$$

$$P[\%] \propto \frac{4\alpha}{4\pi} = \frac{\cos^{-1}(\frac{\phi}{E_{ph}})}{\pi}$$

Simplest model (no materials properties): E<sub>kin</sub>=E<sub>ph</sub>

$$P[\%] \propto \frac{1}{\pi} \cdot \cos^{-1}(\frac{\phi}{E_{ph}})$$



## Approach: Model development to predict QE(Eph)

- Absorbed photons within escape length

 $\Delta$ ph : number of photons absorbed

Number of absorbed photons within escape depth

$$\frac{\Delta ph}{I_0} = (e^{-\mu(d-x)} - e^{-\mu d})$$



Expected QE(E<sub>ph</sub>)

$$QE(E_{ph}) = \frac{\Delta ph}{I_0} \cdot P[\%] \propto (e^{-\mu(d-x)} - e^{-\mu d}) \cdot \frac{1}{\pi} \cdot \cos^{-1}(\frac{\phi}{E_{ph}})$$

Model parameter can be determined by measurement of cathode with various thicknesses



- Expected QE(E<sub>ph</sub>)
  - Expected QE(E<sub>ph</sub>)

$$QE(E_{ph}) = \frac{\Delta ph}{I_0} \cdot P[\%] \propto (e^{-\mu(d-x)} - e^{-\mu d}) \cdot \frac{1}{\pi} \cdot \cos^{-1}(\frac{\phi}{E_{ph}})$$

Model parameter can be determined by measurement of cathode with various thicknesses

Table 3 Metallic cathodes:  $QE = f(\lambda)$ 

| λ [nm]:<br>Ε [eV]: | 193<br>6.42          | 213<br>5.82          | 266<br>4.66          | 308<br>4.03          | 355<br>3.49          | φ <sub>ς</sub><br>[eV] |
|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|
| Al                 |                      | $8.4 \times 10^{-4}$ | 3.2×10 <sup>-5</sup> |                      | $3.4 \times 10^{-7}$ | 4.3                    |
| Au                 |                      | 4.0 × 10             | 1.3×10 °             |                      |                      | 5.1                    |
| Cu                 | $2.0 \times 10^{-4}$ | $1.5 \times 10^{-4}$ | $2.2 \times 10^{-6}$ | $1.6 \times 10^{-7}$ | $8.0 \times 10^{-9}$ | 4.6                    |
| Cu <sup>a</sup>    | $1.5 \times 10^{-3}$ | $4.2 \times 10^{-4}$ |                      |                      |                      | 4.6                    |
| St steel           |                      | $9.0 \times 10^{-5}$ | 1.6×10 <sup>-4</sup> |                      |                      |                        |
| Sm                 |                      |                      |                      | $1.6 \times 10^{-6}$ |                      | 2.7                    |
| Y                  |                      |                      | $2.7 \times 10^{-6}$ | $1.1 \times 10^{-6}$ |                      | 3.1                    |
| Y a                |                      |                      | $1.8 \times 10^{-4}$ | 22-11-20             |                      | 3.1                    |
| $WK^{+-8}$         |                      |                      |                      | $1.2 \times 10^{-5}$ |                      | 2.8                    |

## Approach: Model development to predict QE(Eph)

-  $QE(E_{ph})$  Estimation





-  $QE(E_{ph})$  Estimation





#### Approach: Design and growth of test cathodes

#### Resources:

- Sputtered cathode : transport on air/modification of workfunction
- Thermally evaporated in growth and characterization chamber: continuously in UHV
- Sample systems
  - Thickness
  - Workfunction

#### Measurement:

- Determination of QE(E), QE(E,  $\phi$ ), QE(E, d)
- Goals:
  - Model verification
  - Determination of escape length x
  - Commissioning of optical setup



#### Conclusions

Developed experimental plan

- Develop simplified model for QE
  - Only non-scattered electrons are considered
  - Full optical description
  - Functional dependency:  $QE_x(d, E_{ph}, \phi)$
  - Should work for  $E_{ph} >> \phi$
  - Can be generalized including tunneling effects

