Cold CMOS Electronics for the readout of very large LAr TPCs

Craig Thorn
On behalf of the LBNE LAr Working Group

TIPP 2011
June 11, 2011
Outline

• LAr40 overview
• The Cold Electronics System
• Analog Front End
• ADC
• Summary

Other presentations at TIPP 2011 describing LBNE LAr40:
 o [412] Membrane cryostat technology and prototyping program towards kton scale Neutrino detectors, Rucinski
 o [422] Designs of Large Liquid Argon TPCs — from MicroBooNE to LBNE LAr40, Yu
 o [223] Front End Readout Electronics of the MicroBooNE Experiment, Chen
LBNE LArTPC inside Cryostats in Cavern

Deep Underground Science & Engineering Lab (DUSEL) in Homestake, South Dakota, USA

LAr40 TPC
2x20 killotonnes

Membrane cryostat technology and prototyping program toward

High Bay Access
Truss Lid for Cryostat
Membrane Cryostat
TPC Arrays

Isolated Personnel Access

June 11, 2011
APA + CPA Assemblies form TPC modules in the Cryostat

Field Cage Bars

APA = Anode Plane Assembly

CPA = Cathode Plane Assembly

Unit Cell
TPM = TPC Module
= 1 APA + 1 CPA (+1 "terminal" CPA)

Volume
~ 0.5 x ICARUS
~2 xMicroBooNE

June 11, 2011
Anode Plane Assembly (APA): the core element of a TPC unit

APAs are structural and electrical units containing all sense wires and readout electronics. They can be tested in LN2 and stored and transported in shipping containers.
LAr TPC Front-End ASIC

Block Diagram

- **16 channels**
- **charge amplifier** (adj. gain)
- **high-order filter** (adj. time constant)
- **ac/dc**, adjustable baseline
- **test capacitor, channel mask**
- **ADC** (12-bit, 2 MS/s)
- **compression**, discrimination
- **multiplexing and digital buffering**
- **LV** or CM digital interface
- **pulse generator, analog monitor**
- **temperature sensor**
- **LAr environment (> 20 years at 88K)**
- Estimated total size ~ 6 x 8 mm²
- Estimated power ~ 10 mW/channel

Layout

- **common register**
- **BGR, common bias, temp. sensor**
- **control logic**
- **dual-stage charge amplifier**
- **filter**
- **ac/dc**
- **channel register**
- **test**
- **gain & mode**
- **peaking time & mode**
- **mode & coupling**
- **bypass**
- **wire**
- **buffer**
- **digital interface (LV or CM)**

Diagram Details

- 16 channels
- Dual-stage charge amplifier
- Filter
- Ac/dc
- Common register
- BGR, common bias, temp. sensor
- Control logic
- Pulse generator, analog monitor
- Temperature sensor
- LAr environment (> 20 years at 88K)
- Estimated total size ~ 6 x 8 mm²
- Estimated power ~ 10 mW/channel
- 16 channels
- charge amplifier, high-order filter
- adjustable gain: 4.7, 7.8, 14, 25 mV/fC (charge 55, 100, 180, 300 fC)
- adjustable filter time constant (peaking time 0.5, 1, 2, 3 µs)
- selectable collection/non-collection mode (baseline 200, 800 mV)
- selectable dc/ac coupling (100µs)

- rail-to-rail analog signal processing
- band-gap referenced biasing
- temperature sensor (~ 3mV/°C)
- 136 registers with digital interface
- 5.5 mW/channel (input MOSFET 3.9 mW)
- single MOSFET test structures
- ~ 15,000 MOSFETs
- designed for room (300K) and cryogenic (77K) operation
- technology CMOS 0.18 µm, 1.8 V
Measurements affected by:

- **input line parasitic resistance**
 - ~150 e⁻ at 77 K (~590 e⁻ at 300K)
 - addressed in next revision
- **C_{IN} dielectric noise** (not present in wire)
 - ~60 e⁻ at 77 K

\[d\text{ENC} \approx \sqrt{2kT C_{\text{IN}} \tan \delta} \]

\[\approx \begin{cases}
200 \text{ e}^- \text{ for NPO} \\
60 \text{ e}^- \text{ for MICA}
\end{cases} \]

ASIC revision 2 designed and fabricated, currently being tested
FEE ASIC Evaluation

FEE Test Stand for MicroBooNE is operational

- Full front end electronics chain, from CMOS ASIC to Receiver/ADC board, data is acquired to PC through FPGA board and Gigabit Ethernet
- One temporary 32 channel cold cable is available which has one broken channel
- Without detector capacitance, noise is ~200e⁻ with 1us peaking time
- Nonlinearity and crosstalk are less than 0.5%
- FEE test stand will be upgraded with the second version of ASICs and two prototype cold cables, more tests to follow

June 11, 2011
Noise Measurement

Gain & Peaking Time Measurement

June 11, 2011

TIPP 2011 – Cold Electronics
Some differences in saturation voltage, sub-threshold slope, transconductance
Adjustable gain, peaking time and baseline

maximum charge 55, 100, 180, 300 fC

Gain 25 mV/fC
Peaking time 1μs

Bandgap Reference

\[V_{BGR} \approx \begin{cases} 1.185 \text{ V at } 300 \ ^\circ\text{K} \\ 1.164 \text{ V at } 77 \ ^\circ\text{K} \end{cases} \]

variation \(\approx 1.8 \% \)

Temperature Sensor

\[V_{TMP} \approx \begin{cases} 867.0 \text{ mV at } 300 \ ^\circ\text{K} \\ 259.3 \text{ mV at } 77 \ ^\circ\text{K} \end{cases} \]

\(~ 2.86 \text{ mV/ } ^\circ\text{K}~\)

Pole-zero cancellation at 77K
to be addressed in next revision
ADC - Architecture

Clockless low power ADC stage

Demonstrated in ASIC for SNS, see De Geronimo, et al., IEEE Trans NSS, 54 (2007) 541

Current mode ADC

- **dual stage** 6-MSBs in 150ns, 6-LSBs in 250ns
- single trigger conversion per stage
- 12-bit resolution
- 2 MS/s conversion rate
- power dissipation 3.6 mW at 2 MS/s
- power-down option for low rate applications
 - wake up in few tens of ns
- layout size: 0.23 mm x 1.25 mm

ADC cell

Clockless low power ADC stage

Demonstrated in ASIC for SNS, see De Geronimo, et al., IEEE Trans NSS, 54 (2007) 541
• operation verified at room and cryogenic temperatures
• differential non-linearity limited by timing design error in control circuit
• integral non-linearity limited by mismatch (linear → common centroid)

ASIC revision being designed, to be fabricated in July
Conclusions and Future Work

- CMOS performs better at cryogenic temperatures
- Defined and predictable design for cryogenic T is possible
- Low-noise at cryogenic T demonstrated
 - ENC < 1,000 e⁻ at 200pF ~5mW/ch.
 - characterization and modeling of CMOS 180nm
- Long lifetime at cryogenic T possible with guidelines
- Critical building blocks - front-end & ADC - developed

Future work
- Improve cryogenic static models
- Optimize ADC
- Merge, add zero-suppression & buffering, and finalize
Calibration Scheme

\[C_{\text{INJ}} = 180 \text{ fF nominal} \]

Integrated injection capacitance (10 x 18 \(\mu \text{m}^2 \))

Disabled (grounded) when unused

Measured with high-precision external capacitance

\[C_{\text{INJ}} \approx \begin{cases} 184 \text{ fF} & \text{at 300 K} \\ 183 \text{ fF} & \text{at 77 K} \end{cases} \]

change \(\sim 0.5\% \)
Lifetime - Basic Mechanism

- **Degradation is due to impact ionization**
 - charge trap in oxide, interface generation \rightarrow shift in V_{th} and g_m

- **Substrate current is a monitor of impact ionization**
 - increases with drain voltage
 - is higher in short channel devices
 - has a maximum at $V_{GS} \approx V_{DS}/2$

- Substrate current is a monitor of impact ionization:
 - increases with drain voltage
 - is higher in short channel devices
 - has a maximum at $V_{GS} \approx V_{DS}/2$

![Graph showing substrate current vs. gate-source voltage](image)

Commercial technologies are rated 10 years lifetime (10% g_m shift) in continuous ring oscillator operation: $T = 300$ K, $L = L_{min}$, $V_{ds} = \text{nominal } V_{DD}+5\%$, $V_{GS} \approx V_{DS}/2$
Desired lifetime at low temperature can be achieved by:

1. decreasing V_{DS} (e.g. decreasing the supply voltage)
2. decreasing J_D (i.e. decreasing the drain current density)
3. increasing L (i.e. non-minimum channel length devices)

Design guidelines can be obtained for:

- analog circuits
 - operate devices at low current density
 - use non-minimum channel length L
- digital circuits
 - operate devices at -10% of nom. V_{DD}
 - use non-minimum channel length L
 - operate at low clock frequency

Accelerated tests at cryogenic temperature are being performed to verify guidelines